Effects of F doping on TiO$_2$ acidic sites and their application in QCM based gas sensors

Yingqiang Zhaoa,b, Xin Dua,b, Xiaoying Wangc, Junhui Hea,*, Yunbo Yuc, Hong Hec

a Functional Nanomaterials Laboratory and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun Beiyitiao 2, Haidianqu, Beijing 100190, China

b Graduate University of Chinese Academy of Sciences, Beijing 100049, China

c Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

Titanium dioxide (TiO$_2$) and fluorine doped titanium dioxide (F-TiO$_2$) particles were prepared by a one-pot hydrothermal synthesis, and applied on quartz crystal microbalance (QCM) resonators to detect trace levels of nerve agent stimulant, dimethyl methylphosphonate (DMMP). DMMP sensing measurements exhibited that TiO$_2$ functionalized QCM resonators had fast response and recovery as well as satisfactory sensitivity. F-TiO$_2$ functionalized QCM resonators showed even faster response and higher sensitivity but rather slow recovery. The sensing mechanism and the effect of fluorine doping were examined by diffuse reflectance infrared Fourier transform spectroscopy, revealing that the adsorption took place at Brønsted acid sites at the initial stage and at Lewis acid sites later. Fluorine doping on TiO$_2$ greatly enhanced the acidity of Lewis acid sites, resulting in faster response but slower recovery than pure TiO$_2$. X-ray diffraction analyses demonstrated that the fluorine doping could enhance the crystallinity of anatase.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Highly active, volatile chemical warfare agents (CWAs) such as sarin and soman can cause rapid and severe inhibition of serine proteases. This inhibition is often fatal, as shown by the sarin attacks in the Tokyo subway in 1995 and the anthrax mailing incident in the USA in 2001. Thus, it is of great importance to detect a trace of CWAs and give a timely alarm for the public.

A wide range of transducer technologies, including semiconductor sensor [1,2] and mass sensor (quartz crystal microbalance [3,4], surface acoustic wave [5] microcantilever [6]), as well as newly developed fabrication technologies, such as metal-insulator-metal ensemble (MIME) [7] and microelectromechanical system (MEMS) [7,8] have been applied to meet these challenges. Of all these technologies, mass sensors are one of the most attractive technologies for their high sensitivity and fast response. Though the sensitivity of quartz crystal microbalance (QCM) based mass sensors are two or three orders magnitude lower than some other gravimetric devices such as surface acoustic wave and microcantilever, they still attract broad attention as they have many advantages such as low cost, easy to make and robust in practical applications. Until now, sensing materials used in related mass sensors have concentrated on hydrogen-bond acidic branched copolymers [9,10]. Despite their high sensitivity, applications of these materials have been limited by their poor stability and relative long response and recovery time.

Titanium dioxide has received special attention because of its wide applications as photocatalysts [11], electrodes for lithium secondary batteries [12], and functional coatings in self-cleaning, antifogging [13,14], and chemical sensing [15]. It is also an acidic metal oxide with abundant Lewis and Brønsted acid sites. Considering the possibility that these acid sites may play a similar role as hydroxyl groups in hydrogen-bond acidic branched copolymers, it would be a meaningful attempt to detect CWAs by using TiO$_2$ instead of the copolymers. The completely new concept might, in turn, make the best use of the advantages of metal oxides, such as long-term stability and fast response in combination with high sensitivity of QCM.

The sensing capability of QCM sensors is generally based on the adsorption of target molecules. The modification of TiO$_2$ surface can affect its surface and interfacial properties, and thus may change its sensing characteristics. Surface fluorine doped TiO$_2$ (F-TiO$_2$) can be obtained in a simple ligand exchange way as follows: [16]

\[
\text{Ti-OH} + F^- \leftrightarrow \text{Ti-F} + \text{OH}^- \quad \text{pK}_F = 6.2
\]

Previous reports on fluorine doped TiO$_2$ mainly concentrated on the adjustment of energy bands of TiO$_2$ in order to improve photocatalytic activities [17–19]. The strong electron withdrawing ability of fluorine makes the surface Ti-F serve as an electron...

* Corresponding author. Fax: +86 10 82543535.
E-mail address: jhhe@mail.ipc.ac.cn (J. He).
trapping site, and thus enhances the acidity of Lewis acid sites of TiO₂. This enhancement would facilitate the adsorption of CWAs as mentioned above.

In the current work, TiO₂ and pinecone-like F-TiO₂ particles were synthesized by a facile hydrothermal method, and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Because of health hazards involved with nerve agents, surrogate dimethyl methylphosphonate (DMMP) is commonly used as simulant and was chosen for sensing experiments reported here. The adsorption of DMMP on TiO₂ and F-TiO₂ particles were investigated through diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Sensing characteristics of TiO₂ and F-TiO₂ functionalized QCM resonators to DMMP were also investigated, and the DMMP sensing mechanisms were discussed based on the results obtained by DRIFTS.

2. Experimental

2.1. Materials syntheses

TiO₂ and F-TiO₂ particles were synthesized by a facile one-pot hydrothermal method without and with addition of HF. In a typical procedure, 0.54 g of urea was first dissolved in 30 mL of ethanol in a 40 mL Teflon-lined autoclave. Then, 1.14 mL of HCl and 1.02 mL of tetrabutyl orthotitanate (TBOT) were sequentially injected using pipette into the above urea solution slowly under vigorous stirring. The molar ratio of TBOT: urea: HCl: ethanol in the resultant solution was 0.003: 0.009: 0.014: 0.772. After stirring for 30 min at room temperature, the autoclave was transferred into an electrothermic oven, heated up to 180 °C from room temperature and maintained at 180 °C for 4 hours. A white precipitate was collected by washing twice with ethanol and centrifugal separation. Yellowish F-TiO₂ was synthesized by addition of 0.1 mL HF (0.0025 mol) under otherwise identical conditions. All materials synthesized in this work were calcined at 400 °C for 2 hours before use.

2.2. Sensor fabrication

A drop-coating method was applied to coat both sides of a silver-coated (5 mm in diameter) piezoelectric quartz crystal (AT-cut, 9 MHz) with a sensing material. In a typical procedure, a sensing material (TiO₂ or F-TiO₂) was dispersed in water, and the obtained suspension was dropped onto the surface of silver electrode using a microsyringe. The QCM resonators with thin films were quickly dried at 30 °C in vacuum. Although it is a simple method, it was proved both effective and satisfactory for the aim of the current work [20].

2.3. Instrumentation

Functionalized QCM resonators were tested in a glass chamber which was put in an incubator where a controlled temperature was provided. A dynamic gas-mixing apparatus was used to steadily generate gas containing DMMP of low concentration. Vapor generated by liquid DMMP was taken away by a mass flow controller manipulated gas flow, and then was further diluted in proportion by another steady gas flow. In order to simulate the real environment and keep all environmental conditions consistent, all gas flows were dry air provided by an air compressor through desiccating columns. The relative humidity of dry air was strictly controlled at 5%. A four-way valve was applied to switch between dry air flow and diluted DMMP flow. Frequency shifts were recorded by a Protek c3100 universal counter linked to a computer.

Selectivity characterization was conducted under the same conditions except for the substitution of DMMP with H₂O and alcohols.

In situ DRIFTS was performed on a Nexus 670 (Thermo Nicolet) FT-IR spectrometer equipped with an in situ diffuse reflection chamber and a high-sensitivity MCT detector. Materials for in situ DRIFTS studies were placed in a ceramic crucible in the in situ chamber. Mass flow controllers were used to control flow rates, which were identical to the gas sensing tests. Prior to recording each DRIFTS spectrum, the materials were pretreated with N₂ at 80 °C for 1 hour, and then cooled to room temperature. After acquiring a reference spectrum, a flow of 500 mL/min N₂ was introduced into a gas mixing apparatus to carry away DMMP vapor, and the mixed gas was let into the in situ diffuse reflection chamber. A series of DMMP adsorption spectra were obtained with time. The measurements lasted for 30 minutes. All spectra reported here were collected at a resolution of 4 cm⁻¹ for 100 scans.

A temperature-programmed desorption (TPD) procedure was used to study the adsorption intensity of DMMP on the surface of F-TiO₂. The powders were sieved to 20–40 mesh before pre-saturated with DMMP at 30 °C. Subsequently, the samples were purged in Ar at 30 °C for 120 minutes, and then the furnace was ramped at 10 °C/min to 500 °C. A mass spectrometer (Hiden HPR 20) was used for on-line monitoring the signals of MMP⁺ (m/z = 93), the fragment of DMMP.

3. Results and discussion

3.1. Morphologies of TiO₂ and F-TiO₂ particles

Fig. 1 shows SEM images of as-synthesized TiO₂ and F-TiO₂. Without addition of HF, obtained TiO₂ particles were irregular and agglomerated. With addition of HF, however, pinecone-like F-TiO₂ particles were obtained. The formation mechanism of the structure was discussed in our previous work [21], and is attributed to both HF etching and Ostwald ripening.

XRD analyses (Fig. 2) revealed that both TiO₂ and F-TiO₂ were anatase (JPCDS No. 89-4921). Compared with TiO₂, the intensities of XRD peaks of F-TiO₂ became stronger, and their widths became narrower, indicating enhanced crystallinity. This is because F ions can induce crystallization of anatase [22,23].

3.2. Adsorption of DMMP on TiO₂ and F-TiO₂ particles

Understanding the interaction between a target and a sensing material is important for developing highly effective sensors. The interaction of DMMP with TiO₂ and F-TiO₂ surfaces was investigated by DRIFTS. Most previous works mainly focused on the dissociations processes occurring on TiO₂ surface [24-26]. However, the detailed DMMP adsorption mechanism on TiO₂ surface at room temperature and effects of fluorine doping have not been investigated, and reported with an eye to mass sensors. Herein, the adsorption mechanism of DMMP on TiO₂ and especially on F-TiO₂ were discussed in terms of DRIFTS measurements.

The DRIFTS spectra of adsorbed DMMP on TiO₂ and F-TiO₂ can be broken into two regions: one is the high-frequency region from 3700 to 2800 cm⁻¹ that contains the methyl and hydroxyl stretching vibrations, and the other is the low-frequency region from 1800 to 1000 cm⁻¹ that contains the C–O and P=O stretching vibrations and the methyl deformation vibrations. The region below 1000 cm⁻¹ is rather complex and hard to distinguish, so it is not discussed in this work.

There are two kinds of DMMP adsorption on TiO₂ surface: nondissociative adsorption and dissociative adsorption. Scheme 1
shows two modes of nondissociative adsorption. In Mode I, DMMP is adsorbed through the interaction of the oxygen of its P–O bond with isolated hydroxyl group (Børsted acid site) on the surface of TiO₂. In Mode II, the electron-rich oxygen of its P–O bond coordinates with Ti⁴⁺, which is a Lewis acid site on the surface of TiO₂. These two modes portray two possible nondissociative adsorption mechanisms involving Brønsted and Lewis acid sites, respectively. Scheme 2 shows the dissociative adsorption that involves the change of OCH₃, which could be monitored by DRIFTS spectra.

Fig. 1. SEM images of (a) TiO₂ and (b) F-TiO₂ particles.

Fig. 2. XRD patterns of TiO₂ and F-TiO₂ particles.

Scheme 1. Schematic illustration of the nondissociative adsorption modes of DMMP on the surface of TiO₂.

Scheme 2. Schematic illustration of the dissociative adsorption mode of DMMP on the surface of TiO₂.

Fig. 3. DRIFTS spectra of DMMP on TiO₂ particles at different times: (a) 1 min, (b) 2 min, (c) 3 min, (d) 5 min, (e) 10 min, (f) 15 min, (g) 30 min.
[26]. Such reaction occurs frequently in hydrolysis and photodegradation processes.

3.2.1. Interaction of DMMP with TiO2

In the high-frequency region, molecular adsorption of DMMP is evidenced by the asymmetric and symmetric modes of CH3 (OCH3) stretching vibrations at 2958 and 2852 cm\(^{-1}\) (Fig. 3 and Table 1), which are almost the same as those of gaseous DMMP reported in literature [27] and do not change during the whole course. In addition, the bands at 2999 and 2927 cm\(^{-1}\) are attributed to \(\nu_a(CH_3P)\) and \(\nu_s(CH_3P)\), respectively, which are also a proof of molecular adsorption of DMMP on TiO2.

As shown in Scheme 1, both nondissociative adsorption modes only involve the P=O bond, and the adsorption of DMMP can thus be examined by the perturbation of P=O. In the low-frequency region, the P=O stretching mode, which occurs at 1276 cm\(^{-1}\) for gaseous DMMP, shifts to 1218 cm\(^{-1}\). Simultaneously, a broad negative band at 3710–3620 cm\(^{-1}\) in the high-frequency region as well as a negative band at 1622 cm\(^{-1}\) in the low-frequency region appear and increase with time, indicating consumption of strongly adsorbed water molecules [28]. The fact that the development of the 1218 cm\(^{-1}\) stretching mode of P=O is accompanied by a decrease of strongly adsorbed water molecules is explained by hydrogen bonding of DMMP molecules to the surface through strongly adsorbed water molecules as illustrated in Mode I. With time going on, about 10 min later, a new band at 1244 cm\(^{-1}\) becomes discernible and eventually overpasses the band at 1218 cm\(^{-1}\) after 30 min adsorption. As no further decrease of strongly adsorbed water molecule peak was observed, the new band at 1244 cm\(^{-1}\) could be attributed to the adsorption of DMMP on Lewis acid sites as illustrated by Mode II in Scheme 1. The dissociative adsorption illustrated in Scheme 2 involves a formation of a bond methoxy species (Ti-OCH3) that has a \(\nu(Ti-OCH_3)\) stretching band at 2831 cm\(^{-1}\) according to literature [29]. However, no band at 2831 cm\(^{-1}\) was observed at all measurement times, meaning no dissociative adsorption had occurred on the surface of TiO2. In fact, an on-line mass spectroscopy was also applied to detect any possible dissociation products such as CH3OH, and no signals of such products were recorded. The results reveal that the adsorption of DMMP on TiO2 is nondissociative adsorption rather than dissociative adsorption, and the adsorption is through hydrogen bonding at the initial stage but through coordination to the Lewis acid sites later. The hydrogen bonding adsorption mode may be referred as dynamically controlled because of its low active energy, and the Lewis acid sites adsorption mode may be referred as thermodynamically controlled because of its high stability. The adsorption on Lewis acid sites via coordination is more stable than that through hydrogen bonding, which means the former is more difficult to desorb from TiO2 surface than the latter.

3.2.2. Interaction of DMMP with F-TiO2

Fig. 4 shows DRIFTS spectra of DMMP adsorbed on F-TiO2 at 30 °C. In the high-frequency region, similar methyl stretching vibrations were observed at 2956 and 2852 cm\(^{-1}\) for OCH3, 2995 cm\(^{-1}\) for \(\nu_s(CH_3P)\) and 2927 cm\(^{-1}\) for \(\nu_a(CH_3P)\). However, the low-frequency region is different. F-TiO2 is highly dehydroxylated as a result of ligand substitution. As a result, no characteristic peaks of hydrogen bonding adsorption were observed as mentioned in DMMP adsorption on TiO2. Instead, a peak at 1275 cm\(^{-1}\) appeared at the initial stage but through coordination to the Lewis acid sites. A careful comparison with the position of P=O on TiO2 indicates that a blue shift occurred for F-TiO2. Similar phenomenon was reported previously in the work of Österlund and coworkers [30]. They found the \(\nu(P=O)\) bond in diisopropyl fluorophosphate (DFP) has a higher frequency than in DMMP, and they ascribed it to the electron withdrawing of electronegative halogens bonded to the phosphorus atom. In the current work, although the fluorine atom is bonded to Ti4+ rather than phosphorus atom, the electron withdrawing effect still can act through titanium atom. As a result, the frequency of \(\nu(P=O)\) shifts to 1255 cm\(^{-1}\), 11 cm\(^{-1}\) higher than that on TiO2. The shift indicates that the existence of fluorine atoms on TiO2 surface can enhance the acidity of the Lewis acid sites. This enhancement results in a stronger adsorp-

![Fig. 4. DRIFTS spectra of DMMP on F-TiO2 particles at different times: (a) 1 min, (b) 2 min, (c) 3 min, (d) 5 min, (e) 10 min, (f) 15 min, (g) 30 min.](image-url)
tion of DMMP on F-TiO2 than on pure TiO2, making desorption of DMMP from the adsorption sites even harder. Thus, the adsorption of DMMP on F-TiO2 is not exactly the same as that on TiO2.

Significant differences in DRIFTS spectrum were noted between TiO2 and F-TiO2 particles. New bands centered at 1730 cm\(^{-1}\), 1686 cm\(^{-1}\) and 1535 cm\(^{-1}\) were observed simultaneously with the Lewis acid site adsorption on F-TiO2, but not observed on TiO2. Although previous works [24,25,31] mentioned some similar bands in context with DMMP dissociation and photocatalytic oxidation, those results do not meet the circumstance in the current work and the bands are not well fitted. Since no illumination was applied in the current work, the most possible reaction occurred would be the decomposition of DMMP on F-TiO2. The direct evidence is the broad peak around 3200 cm\(^{-1}\), which can be attributed to \(\nu(O-H)\) of the surface-bound decomposition product of CH3OH. Such surface-bound CH3OH is probably active enough to react in two pathways.

One is that they may be oxidized as evidenced by the appearance of the peak at 1730 cm\(^{-1}\), which is the \(\nu(C=O)\) of the surface-bound formaldehyde [26]. The formed surface-bound formaldehyde may be further oxidized. In fact, the broad band around 1535 cm\(^{-1}\) suggests formaldehyde or carboxylate on F-TiO2. The other is an aldol condensation-type reaction between adsorbed DMMP and methoxy groups according to Kiselev et al.’s work [30], which is supported by the peak at 1686 cm\(^{-1}\). However, both pathways must be minority reactions as evidenced by the weak intensity of the peaks. It is understood that all the reactions occurred on the surface and all products were hard to leave because of the strong adsorption of Lewis acid sites, which could not be further adsorption and reaction on the surface. Therefore, the DMMP adsorption on F-TiO2 is quite different from that on TiO2. Firstly, F-TiO2 is highly dehydroxylated, and adsorption only occurs on Lewis acid sites. Secondly, the existence of fluorine atoms enhances the acidity of Lewis acid sites, resulting in a stronger adsorption and harder desorption. The existence of fluorine may also activate the adsorbed DMMP, making them partially decompose.

Compared with the results obtain by Tripp and his coworkers, though there are some similarities for pure TiO2 in DMMP sorption at room temperature, the main difference comes from the effects of F doping. On one hand, the F doping changed the DMMP adsorption mode, and on the other hand, the existence of F lowered the decomposition temperature of DMMP.

3.3. DMMP responses of TiO2 and F-TiO2 functionalized QCM resonators

The identification of TiO2 and F-TiO2 surface acid sites and the interaction between surface acid sites and DMMP would doubtlessly enhance the understanding of response mechanism in DMMP sensing measurements. Based on DRIFTS results mentioned above, the Lewis and Brønsted acid sites on the surface of the two sensing materials would play a major role in inducing the frequency change of functionalized QCM resonators.

Typical response profiles of TiO2 and F-TiO2 functionalized QCM resonators exposed to 10 ppm of DMMP at 15 °C are depicted in Fig. 5. TiO2 shows a quite reasonable response to DMMP under current conditions (Fig. 5a). The sensitivity, the ratio of frequency shift (Hz) to DMMP concentration (ppm) is 5 Hz/ppm. However, the response and recovery time are 27 s and 31 s, respectively, much faster than commonly used hydrogen-bond acidic branched copolymers. The later always show response and recovery time as long as several minutes. Surprisingly, the F-TiO2 functionalized QCM resonator exhibits an even higher sensitivity as well as faster response than pure TiO2 (Fig. 5b). The sensitivity reaches as high as 16Hz/ppm, and the response time shortens to only 8 s. However, the recovery time is quite long, and the adsorption seems irreversible. Although it is hard to recover under measurement conditions, the QCM resonator could be recovered by being placed in a vacuum oven at 80 °C for 2 h.

Variation of the responses of TiO2 and F-TiO2 functionalized QCM resonators with DMMP concentration are shown in Fig. 6. Both resonators exhibit a good linear relationship of response vs. concentration at low DMMP concentrations (4–30 ppm). The slope of the curves, i.e., the sensitivity of the resonators, is 5 Hz/ppm for TiO2 and 16 Hz/ppm for F-TiO2, respectively. The sensitivity of F-TiO2 functionalized resonator is even higher than some commonly used hydrogen-bond acidic branched copolymers [32,33], which may make it possible to detect DMMP even at ppb levels.

To examine the recovery ability of F-TiO2 functionalized resonators, DMMP response measurements were conducted at varied conditions, the QCM resonator could be recovered by being placed in a vacuum oven at 80 °C for 2 h.

Fig. 5. Response profiles of TiO2 (a) and F-TiO2 (b) functionalized QCM resonators to DMMP at 15 °C. The DMMP concentration was 10 ppm.

Fig. 6. Variation of the responses of TiO2 and F-TiO2 functionalized QCM resonators with DMMP concentration at 15 °C.
temperatures as shown in Fig. 7. Compared with the TiO2 functionalized QCM resonator which could easily recover at even as low as 10°C after switching from DMMP to fresh air, F-TiO2 could only partially recover. With increase of temperature, recovery improved but still could not fully recover even at 25°C. The thermal stability of DMMP adsorbed on the surface of F-TiO2 was explored by means of temperature-programmed desorption (TPD) in flowing Ar, and the result is shown in Fig. 8. Similar with the sensing results, most of the adsorbed DMMP molecules could desorb from the surface at 30°C. However, it took quite a long time (more than 2 h). When the temperature increased to 85°C, another small desorption peak appeared. It could be attributed to the dissociation of DMMP which had not desorbed from the surface of F-TiO2 at room temperature. The relatively low dissociation temperature compared with pure TiO2 (>200°C) [26] again proved the effect of F doping as discussed in Section 3.2. The enhanced acidity made DMMP easier to dissociate compared with pure TiO2.

The difference in sensing properties of TiO2 and F-TiO2 functionalized QCM resonators can be explained by different effective acid sites on surface as revealed by DRIFTS. As discussed above, DMMP adsorbs on pure TiO2 through hydrogen bonding at the initial stage and through coordination to Lewis acid sites later. It is currently hard to discern which plays a predominant role in the whole sensing process, but both interactions are clearly not too strong for DMMP to desorb from the surface of TiO2 by flushing with fresh air at room temperature. Although the interaction sites are also Lewis acid sites for F-TiO2, F-TiO2 functionalized QCM resonator exhibits higher sensitivity, shorter response time but partial irreversibility at room temperature. Such different response characteristics can be attributed to the change of acidity of Lewis acid sites resulting from fluorine doping, as revealed by DRIFTS. Because of the electron withdrawing ability of fluorine, F-TiO2 shows even higher Lewis acidity than pure TiO2. This enhancement of acidity makes Lewis acid sites of F-TiO2 more accessible for DMMP, thus resulting in faster response. However, this enhancement also makes the adsorption stronger so that DMMP is more difficult to desorb from the sites, exhibiting partial irreversibility.

Selectivity is a key property for sensors. However, in only a few instances has the selectivity of detection been investigated. In this section, the selectivity of TiO2 and F-TiO2 to DMMP were studied in consideration of possible interfering agents such as H2O and alcohols. Each organic vapor was at a saturated concentration. As can be seen in Fig. 9, the selectivity of pure TiO2 was quite poor. The responses of TiO2 functionalized QCM resonators to H2O, methanol and ethanol were much higher than to DMMP. In contrast, F-TiO2 functionalized QCM resonators exhibited excellent selectivity. Though the concentration of interfering agents was much higher than DMMP, the response of F-TiO2 was only 42, 40, 28 Hz to H2O, methanol and ethanol, respectively, far lower than to DMMP (172 Hz). Undoubtedly, the difference could be attributed to the effect of F doping. Considering the effects of hydrophobic treatment of coating surfaces with perfluoroctyltriethoxysilane (POTS) [34,35], it is not difficult to understand the excellent selectivity of F-TiO2. The existence of F on the surface of TiO2 can prohibit the adsorption of polar molecules such as H2O and alcohols, resulting in quite low responses to them.

4. Conclusion

TiO2 and F-TiO2 particles were prepared by a facile one-pot hydrothermal synthesis and used as sensing material for QCM gas sensors to detect a trace level of CWAs surrogate DMMP. Compared with traditional DMMP sensing materials used for mass sensors, i.e., hydrogen bond acidic branched copolymers, acidic metal oxide TiO2 can greatly improve the gas sensing characteristics to much shorter response (27 s) and recovery (31 s) time. F-TiO2 can further improve the gas sensing characteristics by shortening the response time to only 8 s but at the price of partial irreversibility. F-TiO2 showed excellent selectivity in respect of interfering gases such as H2O and alcohols, which is another great improvement of the sensing characteristics of QCM based sensors. Both of them can be used as sensing material on mass sensors to detect DMMP for different requirement. Mechanism studies show that the adsorption of DMMP on TiO2 takes place at Brønsted acid sites at the initial stage and at Lewis acid sites later. However, F-TiO2 shows different characteristics because of high dehydroxylation. The adsorption of DMMP only occurs at Lewis acid sites. It is rather stronger on F-TiO2 than on pure TiO2 because of the strong electron withdrawing ability of fluorine. The key importance of the current work is not...
only the first time to detect DMMP by using TiO2 and F-TiO2 functionalized QCM resonators, but also the enhanced understanding of different adsorption behaviors of the two sensing materials caused by fluorine doping, which provides a new method to improve the selectivity of TiO2 for detection of DMMP.

Acknowledgements

This work was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (CAS) (Grant No. KGCX2-YW-111-5), the National Natural Science Foundation of China-NSAF (Grant No. 10776034), the National Natural Science Foundation of China (Grant No. 20871118), the National Basic Research Program of China (Grant No. 2010CB934103), and “Hundred Talents Program” of CAS.

References

Biographies

Yingqiang Zhao is a doctoral candidate in Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. His research interests are nanomaterials synthesis and their application in gas sensors.

Xin Du is a doctoral candidate in Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. His research focuses on the preparation and application of hollow nanomaterials.

Xiaoying Wang is a doctoral candidate in Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Her research interests are diesel exhaust aftertreatment technology and NOx storage and reduction catalysts.

Junhui He obtained his Ph.D degree from Chinese Academy of Sciences. He then spent two years in Manchester Polytechnic as a postdoctoral fellow, one year in Centro de Investigacion en Quimica Aplicada as Inv. Tit. “A,” and nearly four years at Frontier Research System of KIEN in a STA fellow and FRS researcher. He is currently a professor at Technical Institute of Physics and Chemistry of CAS. His research interests involve nanoparticles, organic/inorganic hybrid thin films, functional nanomaterials, and biomimetic materials.

Yunbo Yu Dr. Yu received his Ph.D. degree in environmental science from Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. He spent two years as a JSPS postdoctoral fellow in Prof. Haruta’s lab at Tokyo Metropolitan University, Japan. His research interests include NOx removal from diesel engine exhaust and low temperature CO oxidation.

Hong He received his Ph.D degree from the University of Tokyo (Tokyo, Japan) in Sept. 1994. He is currently a Professor at Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. His research focuses on the fundamental and applied research on environmental catalysis and related heterogeneous atmospheric chemistry to provide theoretical and technical supports for the goal of air pollution control.