Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils

Jing-Jing Peng, Chao Cai, Min Qiao, Hong Li, Yong-Guan Zhu

1. Introduction

The environmental fate of PAH is of concern because of their mutagenicity, ecotoxicity, and carcinogenic potential of high molecular weight PAH. Microbial degradation is the major process involved in the decontamination of surface soil (Sims et al., 1990). Pyrene arising from incomplete combustion of hydrocarbons is a widespread pollutant in the soil environment, and it is one of the most predominant PAH in the environment. Thus, a deeper understanding of the microbial degradation pyrene will facilitate better ways to migrate and remediate PAH pollution.

Many bacteria using pyrene as the sole carbon source have been isolated from various environments. The majority of them are Gram-positive. The fast-growing Mycobacterium spp (Miller et al., 2004; Leys et al., 2005), which play a key role in the degradation of high molecular weight PAH, have received particular attention. In addition, some pyrene-degrading \gamma-Proteobacteria, such as enteric bacterium Leclercia adecarboxylata, has also been isolated (Eriksson et al., 2002; Sarma et al., 2004). Uncultivated bacteria including \beta- and \gamma-Proteobacteria, identified by DNA-based stable isotopic probing, are also primary pyrene degraders (Singleton et al., 2006). However, knowledge of pyrene-degrading bacterial populations is still limited, and mainly originates from studies of cultured bacteria. The characterization of indigenous pyrene-degrading microbial populations is therefore necessary for a better understanding of natural biodegradation processes in and for the successful application of bioremediation technologies.

The initial step of PAH metabolism commonly occurs via the incorporation of molecular oxygen into the aromatic nucleus by a multi-component aromatic ring-hydroxylating-dioxygenase (RHD) enzyme system forming cis-dihydrodiol. RHD is composed of a large \alpha subunit and small \beta subunits (Mason and Cammack, 1992). Functional markers encoding key enzymes of characteristic metabolic pathways can be used to specifically target functional guilds of microorganisms (Lueders and Friedrich, 2003). The genes encoding \beta- and \gamma-Proteobacteria, identified by DNA-based stable isotopic probing, are also primary pyrene degraders (Singleton et al., 2006). However, knowledge of pyrene-degrading bacterial populations is still limited, and mainly originates from studies of cultured bacteria. The characterization of indigenous pyrene-degrading microbial populations is therefore necessary for a better understanding of natural biodegradation processes in and for the successful application of bioremediation technologies.

This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in \nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that \nidA gene number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils.

This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in \nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that \nidA gene number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils.

© 2010 Elsevier Ltd. All rights reserved.
sieved-mesh and stored in the dark at 4°C (Maliszewska-Kordybach, 2003). The soils were then spiked with 1000 mg L−1 of fluoranthene-d10 as used as substitute. Soil samples (1 g) were Soxhlet-extracted with acetone and dichloromethane (1:1) for 4 h by following cleaning up on SiO2, Na2SO4 and Al2O3 micro-columns. And 100 mg kg−1 of phenanthrene-d10 was used as internal standard to the extractant. Concentrated (1 ml) soil extracts were analyzed using an Agilent gas chromatograph (7890A) equipped with a mass-selective detector (model 5975) and 7683B series autosampler (Agilent Technologies) with the following conditions: Helium was used as a carrier gas (constant velocity of 30 cm s−1) with a split-less injection system at 250°C. GC oven was programmed as follows: 50°C for 1 min followed by a 10°C min−1 ramp to 200°C and then with a ramp of 8°C min−1 to final temperature of 280°C and hold for 10 min. Mass spectrometer detection was using the selected ion monitoring system. The data were the average of three replicates.

2.4. DNA extraction and qPCR analysis

Triplicate bottles from each treatment were destructively sampled at various time points. Soil DNA was extracted from 0.5 g of soil (dry weight) with a FastDNA Spin Kit for soil (BIO101) as described by the manufacturer with minor modifications (Dionisi et al., 2004). DNA extraction were described in Table 2. Total Bacteria were quantified using primers (BACT1369F and PROK1492R) and methods as described by Suzuki et al. (2000). Amplification conditions were 30 s 94°C, 15 s 95°C, 1 min 56°C in a reaction volume of 25 μl containing 12.5 μl Premix Ex Taq™(Takara), 1 μl of each 10 μm primer (Takara), 0.2 μl 25 mM BSA and 2 μl DNA in (1:10 dilution of original extracts) as templates. A qPCR assay targeting fast-growing Mycobacterium 16S rDNA genes and pyrene dioxygenase gene nidA (Mycobacterium) were also quantified as described previously (Debruyne and Sayler, 2009). The annealing temperature was at 57°C and 59°C, respectively. Amplification reactions were performed as described above. All the real-time PCR reactions were performed on an IQ5S thermocycler (BioRad, USA).

The bacterial standard template DNA was generated by PCR with Bacteria (27f/1492r) specific primers. The PCR products were cloned into pGEM-T Easy vector (Promega, USA). Plasmids were transformed into Escherichia coli JM109 cells (Takara). These clones were sequenced and used as an internal standard. For generation of the Mycobacterium and nidA gene standard, Mycobacterium sp. 60Y (supported by John C. Willson) used as the template was amplified with Mycobacterium (Mycob-F/Mycob-R) and nidA (nidA-F/nidA-R) specific primers and cloned as above. All quantitative PCR reactions were performed in triplicate. Ten-fold serial dilutions of a known copy number of the plasmid DNA were used to perform qPCR assays in triplicate to generate standard curves.

2.3. Pyrene quantification

Analysis of pyrene followed the procedure described earlier (Maliszewska-Kordybach et al., 2007). At the time of extraction, 100 mg kg−1 of fluoranthene-d10 was used as substitute. Soil samples (1 g) were Soxhlet-extracted with acetone and dichloromethane (1:1) for 48 h by following cleaning up on SiO2, Na2SO4 and Al2O3 micro-columns. And 100 mg kg−1 of phenanthrene-d10 was used as internal standard to the extractant. Concentrated (1 ml) soil extracts were analyzed using an Agilent gas chromatograph (7890A) equipped with a mass-selective detector (model 5975) and 7683B series autosampler (Agilent Technologies) with the following conditions: Helium was used as a carrier gas (constant velocity of 30 cm s−1) with a split-less injection system at 250°C. GC oven was programmed as follows: 50°C for 1 min followed by a 10°C min−1 ramp to 200°C and then with a ramp of 8°C min−1 to final temperature of 280°C and hold for 10 min. Mass spectrometer detection was using the selected ion monitoring system. The data were the average of three replicates.

2.4. DNA extraction and qPCR analysis

Triplicate bottles from each treatment were destructively sampled at various time points. Soil DNA was extracted from 0.5 g of soil (dry weight) with a FastDNA Spin Kit for soil (BIO101) as described by the manufacturer with minor modifications (Dionisi et al., 2004). DNA extraction were described in Table 2. Total Bacteria were quantified using primers (BACT1369F and PROK1492R) and methods as described by Suzuki et al. (2000). Amplification conditions were 30 s 94°C, 15 s 95°C, 1 min 56°C in a reaction volume of 25 μl containing 12.5 μl Premix Ex Taq™(Takara), 1 μl of each 10 μm primer (Takara), 0.2 μl 25 mM BSA and 2 μl DNA in (1:10 dilution of original extracts) as templates. A qPCR assay targeting fast-growing Mycobacterium 16S rDNA genes and pyrene dioxygenase gene nidA (Mycobacterium) were also quantified as described previously (Debruyne and Sayler, 2009). The annealing temperature was at 57°C and 59°C, respectively. Amplification reactions were performed as described above. All the real-time PCR reactions were performed on an IQ5S thermocycler (BioRad, USA). The bacterial standard template DNA was generated by PCR with Bacteria (27f/1492r) specific primers. The PCR products were cloned into pGEM-T Easy vector (Promega, USA). Plasmids were transformed into Escherichia coli JM109 cells (Takara). These clones were sequenced and used as an internal standard. For generation of the Mycobacterium and nidA gene standard, Mycobacterium sp. 60Y (supported by John C. Willson) used as the template was amplified with Mycobacterium (Mycob-F/Mycob-R) and nidA (nidA-F/nidA-R) specific primers and cloned as above. All quantitative PCR reactions were performed in triplicate. Ten-fold serial dilutions of a known copy number of the plasmid DNA were used to perform qPCR assays in triplicate to generate standard curves.

Table 1

Properties of soils from Sanming (SM) and Quanzhou (QZ) in China.

<table>
<thead>
<tr>
<th>Properties</th>
<th>SM</th>
<th>QZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil texture</td>
<td>Sand</td>
<td>Sand</td>
</tr>
<tr>
<td>Sand (%)</td>
<td>69</td>
<td>82</td>
</tr>
<tr>
<td>Silt (%)</td>
<td>30</td>
<td>18</td>
</tr>
<tr>
<td>Clay (%)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOC (%)</td>
<td>1.17</td>
<td>0.88</td>
</tr>
<tr>
<td>pH</td>
<td>4.98</td>
<td>5.84</td>
</tr>
<tr>
<td>Total PAH (ng g⁻¹)</td>
<td>69</td>
<td>94</td>
</tr>
<tr>
<td>Pyrene (ng g⁻¹)</td>
<td>16</td>
<td>13</td>
</tr>
</tbody>
</table>
2.5. Bacterial community analysis by T-RFLP analysis

PCR amplification and T-RFLP analysis of bacterial 16S rDNA fragments followed the protocols described previously (Laures and Friedrich, 2000; Lu et al., 2006). Briefly, the amplification used 27F and 1492R (Weisburg et al., 1991) and 5’ end of the 27F primer was labeled with 6-carboxyfluorescein. The 50 μl reaction mixture contained 1 μl of DNA template (in 1:10 dilution of original extracts), 5 μl of 10× buffer, 3.6 μl of 25 mM MgCl₂, 1 μl of a 10 mM concentration of the dNTP, 2 μl of 10 mg L⁻¹ bovine serum albumin, 1.6 μl of each primer (10 μM) and 2.5 U of Taq DNA polymerase (Takara). The thermal profile for amplification was as described previously (Rui et al., 2009). The 6-carboxyfluorescein-labeled PCR products were purified using an agarose gel DNA extraction kit (Takara) and digested at 37˚C overnight by HaeIII (Fermentas, Canada), and the DNA fragments were size separated using a 3130xl Genetic Analyzer (Applied Biosystems) (Peng et al., 2008).

2.6. Mycobacterium 16S clone library construction and sequencing

Two clone libraries were constructed. One was for QZ 50 mg kg⁻¹ pyrene-treated soil (QT) on day 60, the other was for QZ control soil (QC) on day 60. The PCR amplification used the primers Myco66f/Myco600R (Leyes et al., 2005) as described in Table 2. A touchdown PCR protocol was used as previously. The amplification conditions were 95˚C 6 min, then 20 cycles of denaturing at 95˚C 30 s, annealing at 55˚C-0.5˚C/cycle for 45 s and extension at 72˚C 45 s, followed by 15 cycles with an annealing temperature at 45˚C, finally extension at 72˚C for 6 min. PCR products were purified and ligated into the pMD19-T Easy vector (Promega, USA) according to the manufacturer’s instructions. Plasmids were transformed as described above, and more than eighty five clones were randomly selected and sequenced for each clone library. The sequences were submitted to the Genbank database to search for similarity with other Mycobacterium sequences using the Blast alignment tool (NCBI homepage, http://www.ncbi.nlm.nih.gov/BLAST/). Sequences were assembled, aligned, and analyzed with MEGA4 software (Tamura et al., 2007). The phylogenetic tree was constructed using the neighbor-joining method. The sequences obtained in this study have been deposited in the EMBL nucleotide sequence database, accession numbers FN690762–FN690936.

3. Results

3.1. Pyrene degradation

Pyrene degradation rates in the two soils were monitored separately following the addition of 50 mg kg⁻¹ pyrene. The concentration of pyrene was measured at different incubation times. In QZ soil spiked with pyrene, degradation was noticeable after 7 days, but not statistically significant, and the dissipation of pyrene was significant at the end of the experiment (day 60) and decreased to 9.76 mg kg⁻¹ (Fig. 1). In contrast to the pyrene treatment soil, there was little pyrene disappearance observed in the QZ sterilized soil. For SM soil, no significant pyrene disappearance was observed in both treatments (Fig. 1). The average extraction efficiency was approximately 60% based on the recovery of a pyrene spike.

3.2. Analysis of pyrene catabolitic genes

For both soils, the gene copy number of total bacteria ranging from 6 × 10⁶ to 4 × 10⁸ copies g⁻¹ dry weight soil in pyrene added soil. There was no significant difference between pyrene treatment and the two control soils (Fig. 2A and B) with the exception of the QZ soil, the bacterial 16S rDNA copy numbers in pyrene treatment were lower than the control (Fig. 2A). The gene copy number of total Mycobacterium 16S rDNA ranged from 1.04 × 10⁶ to 8.63 × 10⁵ copies g⁻¹ dry weight soil. Statistical analysis showed the data from the quantification of bacterial and Mycobacterium 16S rDNA were not significantly different between sampling dates (p > 0.05). For QZ soil, Mycobacterium 16S rDNA copies were higher in pyrene added soil than in the control soil (Fig. 2C). However, for SM soil, the gene copy number of Mycobacterium 16S rDNA was detected at levels just above quantification in the control soil, unlike the pyrene added soil (Fig. 2C and D). For QZ soil, between sampling dates of pyrene added soil, there was a significant difference in the abundance of nidA gene. The nidA gene copy numbers which increased with incubation time ranged from 7.88 × 10⁵ to 3.05 × 10⁶ copies g⁻¹ of dry weight soil (Fig. 2E). But for SM soil, no significant differences were observed for nidA gene copy numbers in the pyrene added soil (Fig. 2F). In addition, the nidA gene copy numbers were not detected (data not shown) in the two control soils, which might be due the fact that the control soils had little pyrene contamination.

3.3. Structure of microbial community

The T-RFLP fingerprints of bacterial communities in soils incubated for different periods after the addition of pyrene were compared with those of the control microcosms. Six fragments (191 bp, 194 bp, 214 bp, 222 bp, 228 bp and 231 bp) were detected as major peaks in the T-RFLP profiles (Fig. 3). T-RFLP patterns showed that there were no substantial changes in bacterial community during the 60-day incubation period, neither in pyrene-spiked nor in the control soil. Only some of the major peaks such as T-RFs 191 bp, 194 bp showed small variations (Fig. 3C and D). In addition, there were no significant changes in bacterial community after the addition of pyrene. However, T-RFLP patterns showed more significant changes in terms of community structure between different soils (Fig. 3).

Detection of nidA gene in QZ soil indicated the existence of fast-growing, potentially the PAH-degrading Mycobacterium (DeBruyn et al., 2007). To investigate the diversity of Mycobacterium, two clone libraries were constructed. One hundred and seventy six clones were successfully sequenced. A neighbor-joining tree generated using Kimura’s two-parameter distance method (Kimura, 1980), is shown in Fig. 4. For the clone library of the pyrene treatment, maximum-likelihood analysis indicated that most sequences fell into the PAH-degrading, fast-growing Mycobacterium clusters, such as M. flavescens, M. austroafricanum. For the clone library of the control soil, several sequences fell into M. gordonae (Rogall et al., 1990) which is the slower-growing Mycobacterium cluster.

4. Discussion

In the present study, background soils were used to examine the diversity of bacterial community structure after the addition of pyrene. We firstly evaluated the influence of pyrene addition on
bacterial community using T-RFLP analysis. There was no significant difference in the bacterial community between the pyrene-spiked and the control soil. Our data implicated the inherent resistance of the bacterial community to pyrene concentration of 50 mg kg\(^{-1}\). This was similar to the observations that microbial communities could withstand the Cu or water stress with physiological tolerance (Griffiths et al., 2003; Deng et al., 2009).

Quantification through Real-Time PCR is considered to be an accurate method for estimating the biodegradation potential of a PAH-degrading bacterial consortium in contaminated environments (Cebron et al., 2008). In our experiment, we quantified the bacterial 16S rDNA, Mycobacterium 16S rDNA, \(nidD\) gene abundances in two pyrene-spiked soils. 16S rDNA gene was a proxy for bacterial biomass (Kim et al., 2005a). There was little difference in the 16S rDNA gene copy numbers between different treatments, while there was also a decreasing trend observed for 16S rDNA gene copy numbers with the incubation time in both soils. This indicated that there was no significant population change or bacterial biomass change during the incubation period with pyrene. This is similar to previous study showing that 16S rDNA gene copy numbers were not affected by the addition of naphthalene (Park and Crowley, 2006).

In our study, there was a significant difference in pyrene degradation between the two soils. No significant decrease in SM soil was observed over two months incubation with initial pyrene concentrations of 50 mg kg\(^{-1}\). However, for QZ pyrene-spiked soil, pyrene concentrations began to decrease after 7 days (Fig. 1). This might be related to different soil characteristics. The organic content of SM soil was higher than QZ soils (Table 1). Organic matter is related to bioavailability in terms of a) sorbing PAHs so that they are unavailable to microorganisms through uptake through the cell membranes, and b) also influence the desorption

Fig. 2. Quantification of bacterial 16S rDNA (A, B), Mycobacterium 16S rDNA (C, D) pyrene dioxygenase gene \(nidD\) copy numbers (E, F); data are means ± SE; \(n = 3\). Different letters within rows are significantly different \((p < 0.05)\) according to one way-ANOVA analysis. QC, QZ control; SC, SM control.
kinetics in that there is more organic matter for PAHs to diffuse out of. Organic matter content determined the rate of pyrene transfer from soil to microorganisms (Macleod and Semple, 2002). Hence the pyrene degradation rate of SM soil could be slower than QZ soil. In the samples that were used for DNA analysis, the \(\text{nidA} \) gene copy numbers increased significantly to approximate 500-fold in QZ soil. The dissipation of pyrene was up to 80% after 60-day incubation in QZ soil. \(\text{nidA} \) gene responded to pyrene dissipation significantly and suggested that there might be a direct relationship between gene copy numbers and degradation rates for pyrene. This observation was similar to previous studies that there was a positive relationship between \(\text{nidA} \) gene copy numbers and pyrene mineralization (Wang et al., 1996; DeBruyn et al., 2007). But \(\text{nidA} \) gene was not detected in all samples of this study, such as control soil. Previous studies also showed that \(\text{nidA} \) gene was not common in clean soils but for PAH historically contaminated soils (Margesin et al., 2003; Hall et al., 2005; DeBruyn et al., 2007; Debruyn et al., 2009). In addition, soil pH may be another factor influenced the \(\text{nidA} \) gene. Although lower pH may favor pyrene permeate into the cell and help gene induction, causing increased biodegradation in resting cell, lower pH (below 7.5) did slow down the growth of \textit{Mycobacterium vanbaalenii PYR-1} and accumulated more pyrene and toxic intermediate in cytosol, burdening cell activity (Kim et al., 2005b). This may explain that \textit{Mycobacterium} 16S rDNA gene

![Fig. 3. Bacterial community structure in QZ control (A), QZ spike-bio (B), SM control (C), and SMspike-bio (D). The figure shows the relative abundance of terminal restriction fragments (TRF) used as a measure of the composition of the bacterial community; data are means ± SE; n = 3.](image-url)
was not detectable in most SM soil (pH 4.99) before spiking with pyrene. After pyrene was added, *Mycobacterium* 16S rDNA gene was detected at much lower level in SM soil than in QZ soil. This might be the reason that the insignificant degradation in SM soil was observed. But the influence of pH in soil needs further investigation.

In this study, the mycobacteria 16S rDNA gene was quantified. For QZ soil, copy numbers of *Mycobacterium* 16S rDNA gene in all samples were higher in the pyrene treatment than in the control, indicating *Mycobacterium* was induced to grow and was the major player in pyrene degradation. However, there were no significant differences in *Mycobacterium* 16S rDNA gene copy numbers between different incubation times. Compared with *nidA* gene copy numbers, copy numbers of *mycobacteria* 16S rDNA gene was higher. This is expected as not all mycobacteria carries *nidA* gene. However, as both *Mycobacterium* 16S rDNA copy numbers and *nidA* gene copy numbers were increased by the addition of pyrene, we infer that *nidA* gene was associated with *Mycobacterium*. This is in agreement with the fact that *Mycobacterium* spp. is the primary carriers of *nidA* genotypes in the contaminated environment (DeBruyn et al., 2007; Debruyn and Sayler, 2009). For most samples of the SM control soil, *Mycobacterium* 16S rDNA gene was not detected (Fig. 2D). This

![Fig. 4. Phylogenetic relationship of representative Mycobacterium 16S rDNA clone sequences generated from QZ samples of pyrene treatment incubations (QTMYC) and control soil (QCMYC). Bootstrap values (for 5000 interactions) over 50% are indicated on branches.](image-url)
might be due to the fact that less *mycobacteria* was carrying the *nidA* gene (DeBruyn and Sayler, 2009) and might be below the detection limit.

Mycobacterium 16S rDNA clone libraries were constructed. Most sequences closely related to fast-growing PAH-degrading *mycobacteria* and only few sequences related to slow-growing *mycobacteria*. Slow-growing *mycobacteria* was only detected in the control soil. This result was consistent with the finding that no *nidA* gene was detected in the control soil as *nidA*-carrying organisms identified thus far have been fast-growing *mycobacteria* (DeBruyn et al., 2007). Fast-growing PAH-degrading *mycobacteria* carrying *nidA* gene may not be selected without the addition of pyrene. In contrast to the control soil, all sequences were fast-growing PAH-degrading *Mycobacterium* in the pyrene-spiked pristine soil. These observations supported that high diversity of *Mycobacterium* (Cheung and Kinkel, 2001; Leys et al., 2005) occurred in PAH-contaminated soil. It is also further suggested the association of *nidA* gene with fast-growing PAH-degrading *mycobacteria* in pyrene-contaminated soil. These results indicate that *nidA* gene and its abundance may play a key role in pyrene degradation after the addition of pyrene.

In summary, this study highlights the importance of *nidA* gene in pyrene degradation. *Mycobacteria* were prevalent while *nidA* gene was not always detected in pyrene-spiked pristine soils. It is the presence of *nidA* and not just presence of *mycobacteria*, that is likely a more important causal agent for pyrene degradation in soil.

Acknowledgements

We thank John C. Willison from CEA-Grenoble for the generous gift *Mycobacterium* sp. 6PY1. We also thank Kevin C. Jones from Lancaster University for discussion and critical reading of the manuscript. This research was financially supported by the Natural Science Foundation of China (40801118), and Ministry of Science and Technology (2007AA061101 and 2009DFB09120). I.L. is supported by the CAS/Safea International Partnership Program for Creative Research Teams (KZCX2-YW-108).

References

Brinch, U.C., Ekelund, F., Jacobsen, C.S., 2002. Method for spiking soil samples with bacteria and only few sequences related to slow-growing bacteria were detected in spiked soils. This result was consistent with the finding that no *nidA* gene was detected in the control soil as *nidA*-carrying organisms identified thus far have been fast-growing *mycobacteria* (DeBruyn et al., 2007). Fast-growing PAH-degrading *mycobacteria* carrying *nidA* gene may not be selected without the addition of pyrene. In contrast to the control soil, all sequences were fast-growing PAH-degrading *Mycobacterium* in the pyrene-spiked pristine soil. These observations supported that high diversity of *Mycobacterium* (Cheung and Kinkel, 2001; Leys et al., 2005) occurred in PAH-contaminated soil. It is also further suggested the association of *nidA* gene with fast-growing PAH-degrading *mycobacteria* in pyrene-contaminated soil. These results indicate that *nidA* gene and its abundance may play a key role in pyrene degradation after the addition of pyrene.

In summary, this study highlights the importance of *nidA* gene in pyrene degradation. *Mycobacteria* were prevalent while *nidA* gene was not always detected in pyrene-spiked pristine soils. It is the presence of *nidA* and not just presence of *mycobacteria*, that is likely a more important causal agent for pyrene degradation in soil.

Acknowledgements

We thank John C. Willison from CEA-Grenoble for the generous gift *Mycobacterium* sp. 6PY1. We also thank Kevin C. Jones from Lancaster University for discussion and critical reading of the manuscript. This research was financially supported by the Natural Science Foundation of China (40801118), and Ministry of Science and Technology (2007AA061101 and 2009DFB09120). I.L. is supported by the CAS/Safea International Partnership Program for Creative Research Teams (KZCX2-YW-108).

References

Brinch, U.C., Ekelund, F., Jacobsen, C.S., 2002. Method for spiking soil samples with bacteria and only few sequences related to slow-growing bacteria were detected in spiked soils. This result was consistent with the finding that no *nidA* gene was detected in the control soil as *nidA*-carrying organisms identified thus far have been fast-growing *mycobacteria* (DeBruyn et al., 2007). Fast-growing PAH-degrading *mycobacteria* carrying *nidA* gene may not be selected without the addition of pyrene. In contrast to the control soil, all sequences were fast-growing PAH-degrading *Mycobacterium* in the pyrene-spiked pristine soil. These observations supported that high diversity of *Mycobacterium* (Cheung and Kinkel, 2001; Leys et al., 2005) occurred in PAH-contaminated soil. It is also further suggested the association of *nidA* gene with fast-growing PAH-degrading *mycobacteria* in pyrene-contaminated soil. These results indicate that *nidA* gene and its abundance may play a key role in pyrene degradation after the addition of pyrene.

In summary, this study highlights the importance of *nidA* gene in pyrene degradation. *Mycobacteria* were prevalent while *nidA* gene was not always detected in pyrene-spiked pristine soils. It is the presence of *nidA* and not just presence of *mycobacteria*, that is likely a more important causal agent for pyrene degradation in soil.

Acknowledgements

We thank John C. Willison from CEA-Grenoble for the generous gift *Mycobacterium* sp. 6PY1. We also thank Kevin C. Jones from Lancaster University for discussion and critical reading of the manuscript. This research was financially supported by the Natural Science Foundation of China (40801118), and Ministry of Science and Technology (2007AA061101 and 2009DFB09120). I.L. is supported by the CAS/Safea International Partnership Program for Creative Research Teams (KZCX2-YW-108).

References

Brinch, U.C., Ekelund, F., Jacobsen, C.S., 2002. Method for spiking soil samples with bacteria and only few sequences related to slow-growing bacteria were detected in spiked soils. This result was consistent with the finding that no *nidA* gene was detected in the control soil as *nidA*-carrying organisms identified thus far have been fast-growing *mycobacteria* (DeBruyn et al., 2007). Fast-growing PAH-degrading *mycobacteria* carrying *nidA* gene may not be selected without the addition of pyrene. In contrast to the control soil, all sequences were fast-growing PAH-degrading *Mycobacterium* in the pyrene-spiked pristine soil. These observations supported that high diversity of *Mycobacterium* (Cheung and Kinkel, 2001; Leys et al., 2005) occurred in PAH-contaminated soil. It is also further suggested the association of *nidA* gene with fast-growing PAH-degrading *mycobacteria* in pyrene-contaminated soil. These results indicate that *nidA* gene and its abundance may play a key role in pyrene degradation after the addition of pyrene.

In summary, this study highlights the importance of *nidA* gene in pyrene degradation. *Mycobacteria* were prevalent while *nidA* gene was not always detected in pyrene-spiked pristine soils. It is the presence of *nidA* and not just presence of *mycobacteria*, that is likely a more important causal agent for pyrene degradation in soil.

Acknowledgements

We thank John C. Willison from CEA-Grenoble for the generous gift *Mycobacterium* sp. 6PY1. We also thank Kevin C. Jones from Lancaster University for discussion and critical reading of the manuscript. This research was financially supported by the Natural Science Foundation of China (40801118), and Ministry of Science and Technology (2007AA061101 and 2009DFB09120). I.L. is supported by the CAS/Safea International Partnership Program for Creative Research Teams (KZCX2-YW-108).

References

Brinch, U.C., Ekelund, F., Jacobsen, C.S., 2002. Method for spiking soil samples with bacteria and only few sequences related to slow-growing bacteria were detected in spiked soils. This result was consistent with the finding that no *nidA* gene was detected in the control soil as *nidA*-carrying organisms identified thus far have been fast-growing *mycobacteria* (DeBruyn et al., 2007). Fast-growing PAH-degrading *mycobacteria* carrying *nidA* gene may not be selected without the addition of pyrene. In contrast to the control soil, all sequences were fast-growing PAH-degrading *Mycobacterium* in the pyrene-spiked pristine soil. These observations supported that high diversity of *Mycobacterium* (Cheung and Kinkel, 2001; Leys et al., 2005) occurred in PAH-contaminated soil. It is also further suggested the association of *nidA* gene with fast-growing PAH-degrading *mycobacteria* in pyrene-contaminated soil. These results indicate that *nidA* gene and its abundance may play a key role in pyrene degradation after the addition of pyrene.

In summary, this study highlights the importance of *nidA* gene in pyrene degradation. *Mycobacteria* were prevalent while *nidA* gene was not always detected in pyrene-spiked pristine soils. It is the presence of *nidA* and not just presence of *mycobacteria*, that is likely a more important causal agent for pyrene degradation in soil.