Occurrence and distribution of organochlorine pesticides – lindane, \(\text{p,p}'\)-DDT, and heptachlor epoxide – in surface water of China

Jijun Gao \(^a,b\), Linghua Liu \(^b\), Xiaoru Liu \(^b\), Jin Lu \(^b\), Huaidong Zhou \(^b\), Shengbiao Huang \(^a\), Zijian Wang \(^a,\ast\), Philip A. Spear \(^c\)

\(^a\) State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871 Beijing 100085, China
\(^b\) Department of Water Environment, China Institute of Water Resources and Hydro-power Research, Yuyuantan Science and Technology Garden, Haidian District, Beijing 100038, China
\(^c\) Centre de recherche TOXEN and Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec, Canada H3C 3P8

\section*{Article Info}

Article history:
Received 7 August 2007
Accepted 27 March 2008
Available online 27 May 2008

Keywords:
Surface water
China
Lindane
\(\text{p,p}'\)-DDT
Heptachlor epoxide

\section*{Abstract}

Persistent organochlorine pesticides pollutants (OCPs) have been reported to occur at relatively high concentrations in some Chinese waters. In order to map the distribution of organochlorine pesticides in the surface water throughout China, samples were collected from over 600 sites in seven major river basins and three main internal rivers drainage areas during 2003 and 2004. The surface water samples were analyzed for the representative organochlorine pesticides contaminants including lindane (\(\gamma\)-HCH), \(\text{p,p}'\)-DDT and heptachlor epoxide. In general, the most frequently detected compound was lindane, being detected in 83.9\% of samples (mean = 31.3 ng/l; range = 0.17–860 ng/l), and the highest concentration was present in the Yellow River basin. \(\text{p,p}'\)-DDT was detected in 63.1\% of the samples collected (mean = 14.6 ng/l; range = 0.14–368 ng/l) with the highest concentration present in the Hua River basin. Heptachlor epoxide was detected in only 9.3\% of water samples (range = 0.11–10 ng/l). Measured concentrations for the three compounds were lower and rarely exceed the environment quality standard for surface water of China. Lindane was more frequently detected at much higher concentrations in the rivers of northern China compared with those of southern China. The sites with higher concentration of lindane and \(\text{p,p}'\)-DDT mainly occurred in the Yellow River and Hua River basins, so the results of this investigation indicate that the organochlorine pesticide contamination of Yellow River and Hua River basins should be of particular concern relative to the other basins. When compared with other regions of the world, it appears that the Chinese surface water is moderately polluted by lindane and \(\text{p,p}'\)-DDT.

\section*{1. Introduction}

The continued growth in human population has created a corresponding increase in the demand for the Earth’s limited supply of freshwater. Thus, protecting the integrity of our water resources is one of the most essential environmental issues of the 21st century. Recent decades have brought increasing concerns for potential adverse human and ecological health effects resulting from the production, use, and disposal of numerous chemicals that offer improvements in industry, agriculture and so on. Research has shown that many such compounds can enter the environment, disperse, and persist to a greater extent than first anticipated. Over the past few decades, the occurrence of organochlorines pesticides (OCPs) in the environment had been of great concern due to their persistent and long-range transportable nature as well as toxic biological effects (Tanable et al., 1994; Wania and Mackay, 1999). In May 2001, the “Stockholm Convention on Persistent Organic Pollutants” (POPs Treaty) that was adopted by the United Nations Environmental Programme (UNEP) highlighted the need to control the global contamination produced by toxic environmental chemicals. The treaty promotes the global regulations on the production and usage of persistent OCPs, such as aldrin, dieldrin, endrin, heptachlor, chlordane, hexachlorobenzene, mirex, toxaphene, PCBs and DDTs. While most of the developed countries have already banned or restricted the production and usage of these compounds, some developing countries still use OCPs for agricultural and the public health purpose (Monirith et al., 2003). Several studies have reported the elevated concentrations of OCPs in fishes, mussels and birds collected from Asian countries including India, Vietnam and China (Monirith et al., 2003; Kannan et al., 1995; Kunisue et al., 2003), thereby indicating the presence of significant source of OCPs in these regions. As the world’s second largest pesticide manufacturer, it has been estimated that China produced 203,000–381,000 metric tons annually of technical-grade pesticides between 1985 and 1996 (Huang et al., 2000). The magnitude of contamination of these persistent organic pollutants (POPs) in surface water, however, had not been...
systematically investigated at the national scale of China. In order to
determine the contamination status and the spatial distribution of
organochlorine pesticides in China’s surface water, lindane, hepta-
chlor epoxide and \(\text{p,p}’\)-DDT were chosen as the representa-
tive compounds for analysis. Lindane, heptachlor epoxide and \(\text{p,p}’\)-DDT
were widely recognized as endocrine disrupting chemicals, and they
had been used widely in China historically, even now, a certain
amount of heptachlor epoxide and \(\text{p,p}’\)-DDT and a large amount of
lindane are still applied in China, although DDT had been banned to
use from 1983. And now, the lindane and \(\text{p,p}’\)-DDT have been widely
distributed in Chinese environment with significant accumulation
in remote ecosystems (Guruge and Tanabe, 2001; Iwata et al.,
1994), and the average concentrations of OCPs in soils of north China
were higher than those in south China (Cai et al., 2008). Adding the
persistence and the ecological effects, the three compounds were
chosen as representative to characterize the pollution status of
organochlorine pesticides in Chinese surface water. In order to
illustrate the contamination status of OCPs in Chinese surface water,
samples collected from over 600 sites in seven major river basins and
three internal rivers drainage areas were analyzed for lindane,
heptachlor epoxide and \(\text{p,p}’\)-DDT.

2. Materials and methods

2.1. Sampling and sample pretreatment

Little data were available on the occurrence of lindane, heptachlor epoxide and \(\text{p,p}’\)-
DDT at the onset of this investigation. Therefore, the sampling sites were chosen randomly
along the individual river basin. The 623 sites sampled during 2003–2004 (Fig. 1),
including 217 reservoirs and 406 rivers and lakes. Samples were collected from the seven
major river basins, including the Yangtze River basin, the Yellow River basin, the Pearl River
basin, the Songhua River basin, the Liaohe River basin, the Haihe River basin and the
Huaihe River basin, the Southwest internal rivers drainage areas. The global positioning system
(GPS) was used to locate the sampling positions. The sites map distribution is shown in Fig. 1.

All samples were collected by hydrological bureau personnel using consistent
protocols and procedures designed to obtain a representative samples using standard
depth and width integrating techniques (Shelton, 1994). At each site, a composite water
sample was collected from about 4–6 vertical profiles. Water was passed through a
0.45 \(\mu \text{m} \), baked, glass fiber filter in the field where possible, or else filtration
was conducted in the laboratory. Water samples for chemical analysis were stored in
precleaned-amber, glass bottles and collected in duplicate. The duplicate samples were
used for backup purposes (in case of breakage of the primary sample) and for laboratory
replicates. Following collection, samples were immediately chilled by ice and sent to the
laboratory.

Aliquots of the sample (5.0 l), which were filtered through a 0.45 \(\mu \text{m} \) glass fiber
membrane under vacuum and then surrogates (decachlorobiphenyl) were added before
extraction, were extracted by solid phase extraction (SPE) following published
procedures (Zhou et al., 2002; Zhang et al., 2002a,b). Briefly, the SPE cartridges were
first conditioned with 10 ml of methanol followed by 2 \times 5 ml of deionized water. Water
samples were passed through the cartridges at a flow rate of 6 ml/min under vacuum
and pesticides eluted with 6 ml of dichloromethane, followed by another 6 ml
dichloromethane rinse of the surfaces. Residual water was removed by anhydrous
\(\text{Na}_2\text{SO}_4 \), the volume was reduced to dry by rotation evaporator and then add another
15 ml hexane, the new solution volume was reduced by evaporation under nitrogen gas
to 0.4 ml and add the internal standard (2,4,5,6-tetrachloro-m-xylene); and then adjust
to 0.5 ml.

2.2. Chemical analysis

All solvents used for sample processing and analysis (dichloromethane, ethyl
acetate, hexane, aceton, methanol) were of HPLC grade (Supelco). Deionized water was
prepared using a Milli-Q system (Millipore, Watford). Chemical standards of lindane,
heptachlor epoxide and \(\text{p,p}’\)-DDT were obtained from Supelco (purity \(>99\% \)). Working
standards were prepared in hexane and the internal standards 2,4,5,6-tetrachloro-m-
xylene, were added to each working standard. These solutions were further diluted
with hexane to prepare calibration solutions.

<table>
<thead>
<tr>
<th>Pesticides</th>
<th>Mean recovery (%)</th>
<th>MDLs (ng/l)</th>
<th>RSD (%) (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)-HCH</td>
<td>105.4</td>
<td>0.17</td>
<td>3.8</td>
</tr>
<tr>
<td>(\beta)-HCH</td>
<td>97.2</td>
<td>0.14</td>
<td>11.6</td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>116.4</td>
<td>0.11</td>
<td>12.6</td>
</tr>
<tr>
<td>Decachlorobiphenyl (surrogate)</td>
<td>86.7</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
An Agilent 6890 GC equipped with a micro-cell electron capture detector (μECD) was used for lindane, heptachlor epoxide and p,p′-DDT analysis. Peak confirmation was achieved with an Agilent 6890 GC coupled to a model 5973N MS detector in selected ion mode. The capillary column used was HP-5MS (30 m×0.25 mm i.d.×0.25 μm film thickness). All the instruments and capillary column were from Agilent company of America. The carrier gases were helium and nitrogen for MS and μECD, respectively. The inlet was heated to 250 °C. The GC column temperature was programmed as follows: initially at 60 °C (equilibrium time 1 min), increased to 140 °C at the rate of 10 °C/min, then to 230 °C at 5 °C/min before reaching at 260 °C at the rate of 10 °C/min and then held for 10 min. The temperature of μECD was held at 280 °C. The MS temperature was set at 280 °C and the electron impact energy was 70 eV.

2.3. QA/QC procedures

The residue levels of OCPs were quantitatively determined by the internal standard method using peak area. The method detection limits (MDLs) of OCPs were taken to be 3:1 signal versus noise value (S/N). For every set of 10 samples, a procedural blank and a spiked sample with standards were run to check for the interference and cross-contamination. Table 1 illustrates the mean recoveries, MDLs and relative standard derivation (RSD%) of the method. The MDLs ranged from 0.11 ng/l for heptachlor epoxide to 0.17 ng/l for lindane. The spiked recoveries of OCPs using 1 ng of composite standards were in the range of 97.2%–116.4% with RSD% values ranging from 3.8% to 12.6%. These parameters confirmed the suitability of the analytical protocols. A field quality assurance protocol was used to determine the effect, if any, of field equipment and procedures on the concentrations of OCPs in water samples. Field blanks, made from laboratory-grade organic free water, were submitted for about 5% of the sites and analyzed for OCPs. Field blanks were subject to the same sample processing, handling, and equipment as the water samples.

2.4. Statistical analysis

Values for OCPs lower than the method detection limits (<MDL) were substituted with zero prior to statistical analysis. To detect the difference of OCPs concentrations between the north China and south China, the Student t-test was employed in this study. Software from Excel Statistics was used in this study.

3. Results and discussion

3.1. Lindane

In all the surface water samples collected, lindane was detected in 83.9% (MDL=0.17 ng/l) of the samples. The concentrations ranged from <0.17 to 860.0 ng/l, with a mean level of 31.3 ng/l (Table 2), and the 90% percentile value is 70 ng/l. For the seven major river basins and three internal rivers drainage areas, the detection rate of

<table>
<thead>
<tr>
<th>River basins</th>
<th>Number of samples</th>
<th>Detection rate (%)</th>
<th>Mean concentration</th>
<th>Minimum concentration</th>
<th>90th percentile</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Songhua River</td>
<td>40</td>
<td>17.5</td>
<td><0.17</td>
<td>71.0</td>
<td>80.0</td>
<td></td>
</tr>
<tr>
<td>Liaohe River</td>
<td>58</td>
<td>69.0</td>
<td><0.17</td>
<td>80.0</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>Haihe River</td>
<td>39</td>
<td>92.3</td>
<td>47.8</td>
<td><0.17</td>
<td>80.0</td>
<td>110.0</td>
</tr>
<tr>
<td>Yellow River</td>
<td>50</td>
<td>94.0</td>
<td>75.4</td>
<td><0.17</td>
<td>100.0</td>
<td>860.0</td>
</tr>
<tr>
<td>Yangtze River</td>
<td>150</td>
<td>98.7</td>
<td>12.6</td>
<td><0.17</td>
<td>28.2</td>
<td>70.0</td>
</tr>
<tr>
<td>Huaihe River</td>
<td>39</td>
<td>97.4</td>
<td>41.1</td>
<td><0.17</td>
<td>80.0</td>
<td>98.0</td>
</tr>
<tr>
<td>Pearl River</td>
<td>150</td>
<td>79.3</td>
<td>71</td>
<td><0.17</td>
<td>14.0</td>
<td>48.0</td>
</tr>
<tr>
<td>Southeast drainage area</td>
<td>74</td>
<td>97.3</td>
<td>12.9</td>
<td><0.17</td>
<td>36.0</td>
<td>114.0</td>
</tr>
<tr>
<td>Northwest drainage area</td>
<td>18</td>
<td>88.9</td>
<td>57.2</td>
<td><0.17</td>
<td>80.0</td>
<td>80.0</td>
</tr>
<tr>
<td>Southwest drainage area</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td><0.17</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>North China</td>
<td>244</td>
<td>75.4</td>
<td>47.1</td>
<td><0.17</td>
<td>80.0</td>
<td>860.0</td>
</tr>
<tr>
<td>South China</td>
<td>379</td>
<td>89.4</td>
<td>11.4</td>
<td><0.17</td>
<td>28.0</td>
<td>114.0</td>
</tr>
<tr>
<td>Overall detection rate</td>
<td>83.9%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall average concentration</td>
<td>31.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Distribution of lindane in Chinese surface water.
Lindane was from 0% (Southwest internal river region) to 98.7% (Yangtze River basin). Among different river basins, the mean concentration of lindane in the Pearl River basin was the lowest (mean=7.1 ng/l) and that in the Yellow River basin was the highest (mean=75.4 ng/l), the second highest mean level occurred in the Northwest region (57.2 ng/l), followed by the Huaihe River (47.8 ng/l) and Liaohe river (46.9 ng/l). The river basins with high lindane concentration mainly occurred in North China, the highest lindane concentration was detected in a sample from Yellow River basin (860 ng/l), which suggests that the high levels of the OCPs in rivers water were mainly present in areas of north China. The geographic distribution (Fig. 2) also showed that the more polluted sites mainly occurred in the rivers (Haihe River, Liaohe River, Yellow River, Huaihe River) of northern China, while the more polluted sites of the south China only occurred in the Yangtze River estuary and Pearl River estuary. The statistical analysis result showed a significant difference between the northern China rivers and the southern China rivers (t=1.65, p<0.001).

The high detection frequency of lindane at the national scale should be mainly attributed to historical use of technical HCH widely in China. During the 1950s to 1980s, the production of technical HCH containing 12–14% lindane isomer was about 4.9 million tons and accounted for 33% of the total world production (Zhang et al., 2002c). Although the technical HCH was banned in 1983, the continued mobilization from long-term ‘sinks’, such as soil particles, into river systems may have contributed to present day concentrations of lindane in surface water. In addition, the substitute of technical HCH still consists of 99% lindane isomer and was used widely. The high detection rate indicates that lindane pollution remains a matter of concern in China.

The high detection rate in the Yangtze River indicates that the sources should exist around the Yangtze River basin. The Yangtze River basin is the main farming area of China, the total farmland amount is about 5.6×10^7 acres, large amount of OCPs was used in agriculture systems around the Yangtze River. Chinese production of lindane began in 1991 and it was used until 2000 mostly in central eastern China (Li et al., 2001; Zhou et al., 2006). A recent investigation of hexachlorocyclohexane pesticide isomers in surface water of the Qiantang River in East China reported that the dominant form was lindane and attributed this finding to the recent local use of lindane (98% lindane) (Zhou et al., 2006). Although lindane detection frequency was high, its concentrations in Yangtze River were much lower than those of the Yellow River, Huaihe River, Liaohe river and Northwest drainage area rivers. The reason is probably due to the dilution of large water volume of Yangtze River, the average flow volume of year in the Yangze River is 9.8×10^{11} m3, accounting for 34% of the total flow volume of the whole China rivers. Thus, greater flow volume may dilute lindane concentration and decrease pollution degree of Yangtze River.

The lindane pollution in north China river basins is more serious than that in the south China river basins. The much higher concentration sites mainly appeared in the

Table 3
The statistical summary of p,p'-DDT concentrations in Chinese surface waters (ng/l)

<table>
<thead>
<tr>
<th>River basins</th>
<th>Number of samples</th>
<th>Detection rate (%)</th>
<th>Mean concentration</th>
<th>Minimum concentration</th>
<th>90 th percentile</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Songhuajiang River</td>
<td>40</td>
<td>5</td>
<td>>0.14</td>
<td>>0.14</td>
<td><0.14</td>
<td>50</td>
</tr>
<tr>
<td>Liaohe River</td>
<td>58</td>
<td>8.6</td>
<td>>0.14</td>
<td>>0.14</td>
<td><0.14</td>
<td>80</td>
</tr>
<tr>
<td>Huaihe River</td>
<td>39</td>
<td>41</td>
<td>>0.14</td>
<td>>0.14</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Yellow River</td>
<td>50</td>
<td>26</td>
<td>>0.14</td>
<td>>0.14</td>
<td>61</td>
<td>130</td>
</tr>
<tr>
<td>Yangtze River</td>
<td>150</td>
<td>70</td>
<td>13.4</td>
<td>9.1</td>
<td>13.4</td>
<td>168</td>
</tr>
<tr>
<td>Pearl River</td>
<td>150</td>
<td>70</td>
<td>10.1</td>
<td>7.9</td>
<td>8.6</td>
<td>368</td>
</tr>
<tr>
<td>Southeast drainage area</td>
<td>54</td>
<td>0</td>
<td>>0.14</td>
<td>>0.14</td>
<td>6.0</td>
<td>368</td>
</tr>
<tr>
<td>Northwest drainage area</td>
<td>18</td>
<td>41</td>
<td>13.4</td>
<td>9.1</td>
<td>13.4</td>
<td>168</td>
</tr>
<tr>
<td>South China</td>
<td>379</td>
<td>86.0</td>
<td>14.3</td>
<td>10.4</td>
<td>35.4</td>
<td>303</td>
</tr>
<tr>
<td>Overall detection rate</td>
<td>63.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall average concentration</td>
<td>14.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 3. Distribution of p,p'-DDT in Chinese surface water.](image-url)
The high detection frequency of p,p'-DDT in the Chinese surface water may be explained by its historic use. As an agricultural country, the DDT was widely used and the total Chinese production of technical DDT was about 0.4 million tons which accounted for 20% of world production (Zhang et al., 2002c) before DDT was banned in 1983. Because of its physicochemical properties, DDT could exist in the environment for a longer period. In addition, the widely applied pesticide dicofol containing 20% p,p'-DDT continues to be used on cotton and fruit crops, which may be another factor contributing to the p,p'-DDT high detection.

The fact with high p,p'-DDT concentration sites are mainly distributed in the Yellow River, and the presence of DDT residues in Huaihe River, Minjiang River estuary and Pearl River estuary (Fig. 3) indicated that DDT sources still exist in these areas. The Yellow River, Huaihe River and Yangtze River basins are important agricultural areas with an extremely large numbers of agricultural farmlands. Pesticides used yearly on a regular basis, including the pesticide dicofol, which may be a contributing factor for the elevated levels of p,p'-DDT concentrations. While for the Minjiang River, Yangtze River and Pearl River estuaries, the three estuaries are important industrial regions and industrial sources probably explain the increased p,p'-DDT levels detected at these locations. The results of Minjiang and Pearl River estuaries in this study are similar to those of earlier studies of p,p'-DDT contamination in the same estuaries (Zhang et al., 2002b; Zhang et al., 2003; Maskouei et al., 2005; Liu et al., 2005), which suggested that the sources exist around the three estuaries.

According to Table 4, the concentrations of p,p'-DDT ($<0.14–368$ ng/l) in Chinese surface water are two to three orders of magnitude lower than those reported for some of the heavily polluted sites, such as Lake Victoria Basin of East Africa ($24–9,985,000$ ng/l) (Nyangababo et al., 2005), surface water of Gangetic alluvial plains in India ($BDL–79,820$ ng/l) (Sankaramakrishnan et al., 2005), and the Uluabat Lake in Turkey ($ND–222,000$ ng/l) (Nurhayat et al., 2006). While the concentrations of p,p'-DDT in Chinese surface water are also similar to Sao Paulo state in Brazil ($<5–130$ ng/l). However, the concentrations of p,p'-DDT in Chinese surface water are higher than those in some places of the world, such as surface water in Czech Republic (0.036–0.11 ng/l), lakes (0.036–0.17 ng/l) and in the water reservoir of Spain (1.7–31.6 ng/l) (Salvaño et al., 2006; Sandra et al., 2006; Osuna-Flores and Riva, 2002), and the level of lindane in Chinese surface water may be two or three orders lower than those detected in São Paulo state (Brazil) (510–230 ng/l) and surface water of Lake Victoria Basin (East Africa) (24–39,510 ng/l) in India and Uluabat Lake (ND–222,000 ng/l) in Turkey (Nurhayat et al., 2006; Kunwar et al., 2007), but similar to Bay of Olhão in Mexico (20–230 ng/l) and surface water of São Paulo state in Brazil (5–390 ng/l) (Osuna-Flores and Riva, 2002; Sandra et al., 2006), and the level of lindane in Chinese surface water was much higher than that in surface water of Czech Republic (0.036–0.11 ng/l), lakes (0.036–0.17 ng/l) and in the water reservoir of Spain (1.7–31.6 ng/l) (Salvaño et al., 2006; Sandra et al., 2006; Vladimír et al., 2007). The comparison results indicated that the surface water of China is somewhat moderately polluted by lindane.

Table 4

<table>
<thead>
<tr>
<th>Reference</th>
<th>Lindane (ng/l)</th>
<th>Heptachlor epoxide (ng/l)</th>
<th>p,p'-DDT (ng/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vladimír et al. (2007)</td>
<td>0.147</td>
<td>–</td>
<td>0.036</td>
</tr>
<tr>
<td>Moore et al. (2007)</td>
<td>–</td>
<td>–</td>
<td>0.11</td>
</tr>
<tr>
<td>Nyangababo et al. (2005)</td>
<td>–</td>
<td>–</td>
<td>0.11</td>
</tr>
<tr>
<td>Osuna-Flores and Riva (2002)</td>
<td>1.2–86.2</td>
<td>–</td>
<td>0.147</td>
</tr>
<tr>
<td>Sandra et al. (2002)</td>
<td>–</td>
<td>–</td>
<td>1.7–31.6</td>
</tr>
<tr>
<td>Golfinopoulos et al. (2002)</td>
<td>ND</td>
<td>–</td>
<td>24–9,985,000</td>
</tr>
<tr>
<td>Kunwar et al. (2007)</td>
<td>–</td>
<td>–</td>
<td>24–148</td>
</tr>
<tr>
<td>Claver et al. (2006)</td>
<td>ND</td>
<td>–</td>
<td>20–270</td>
</tr>
</tbody>
</table>

3.2. p,p'-DDT

The test results of p,p'-DDT were summarized in Table 3. The detection frequency of p,p'-DDT was 63.1% (MDL=0.14 ng/l) for all the consistent water samples collected, the concentrations ranged from 0.14 to 368 ng/l, with a mean value of 14.5 ng/l (Table 3).

For the seven major river basins and three main internal rivers drainage areas, the detection rate of p,p'-DDT was from 0% (Southwest drainage area) to 98.6% (Southeast drainage area), the second highest detection was the Yangtze River (89.3%), followed by the Pearl River (79.3%) and the Huaihe River (71.8%). High detection in these rivers was consistent with the previous observations (Zhang et al., 2002b; Yang et al. 2005a,b; Wang et al., 1999; Yang et al. 2005b). The p,p'-DDT detection rates of Songhuajiang River, Liaohe River, Haihe River and Yellow River are less than 50%, so the statistical analysis had not been done for these rivers. Among the other basins, the mean concentration of the Pearl River is the lowest (mean=10.1 ng/l) and that in the Huaihe River is the highest (mean=41.3 ng/l), the second highest level occurred in the Southeast internal river drainage area (mean=241 ng/l), followed by the Yangtze river (mean=134 ng/l). The highest p,p'-DDT concentration was detected in the samples from Huanghe River (368 ng/l). These results suggested that the Huaihe River basin was the most seriously polluted by p,p'-DDT. The statistical analysis result indicated that there was no significant difference in concentrations between the north China rivers and the south China rivers ($r=1.96, p=0.46$).

Table 5

The statistical summary of heptachlor epoxide concentrations in surface water samples (ng/l)

<table>
<thead>
<tr>
<th>River basins</th>
<th>Number of samples</th>
<th>Minimum concentration</th>
<th>Maximum concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Songhuajiang River</td>
<td>40</td>
<td><0.11</td>
<td><0.11</td>
</tr>
<tr>
<td>Liaohe River</td>
<td>58</td>
<td><0.11</td>
<td>30</td>
</tr>
<tr>
<td>Haihe River</td>
<td>39</td>
<td><0.11</td>
<td><0.11</td>
</tr>
<tr>
<td>Yellow River</td>
<td>50</td>
<td><0.11</td>
<td>10</td>
</tr>
<tr>
<td>Yangtze Yangtze River</td>
<td>150</td>
<td><0.11</td>
<td><0.11</td>
</tr>
<tr>
<td>Huaihe River</td>
<td>39</td>
<td><0.11</td>
<td>10</td>
</tr>
<tr>
<td>Pearl River</td>
<td>150</td>
<td><0.11</td>
<td><0.11</td>
</tr>
<tr>
<td>Southeast drainage area</td>
<td>74</td>
<td><0.11</td>
<td>10</td>
</tr>
<tr>
<td>Northwest drainage area</td>
<td>18</td>
<td><0.11</td>
<td><0.11</td>
</tr>
<tr>
<td>Overall detection rate</td>
<td>9.3%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

3.3. Heptachlor epoxide

The concentrations of heptachlor epoxide in the surface water samples are presented in Table 5. The overall frequency of detection was quite low, only 9.3% (MDL=0.11 ng/l), and the concentrations range from <0.11 to 10 ng/l, with no statistical mean value at the national scale. For the seven major river basins and three main...
internal rivers drainage areas, the detection frequency of heptachlor epoxide was from 0% (Southwest drainage area, Songhua River basin) to 20.5% (Huaihe River). The second highest detection was the Yellow River (18.0%), followed by the Southeast internal rivers (17.0%) and the Northwest internal rivers (16.7%). As the detection rate of heptachlor epoxide was less than 50% of the water samples at any given area, statistical analysis of the data was considered to be inappropriate and mean values are not reported. As illustrated in Fig. 4, samples containing detectable levels of heptachlor epoxide mainly occurred in the Yellow River and Huaihe River.

In general, heptachlor epoxide had limited use as a pesticide and there was limited available information about its historic use in China. From the result of concentration, the conclusion could be drawn that there was a lightly pollution in Chinese surface water because of its low detection frequency and low concentration. According to Table 4, the level of heptachlor epoxide was lower than that in most place of the world, which also indicates that the surface water of China was only lightly polluted by heptachlor epoxide.

Among the three compounds, the rank of detection frequency was lindane (83.9%)-p,p′-DDT (63.1%)-heptachlor epoxide (9.3%), and the rank of mean concentration was also lindane (31.3 ng/l)-p,p′-DDT (14.6 ng/l)-heptachlor epoxide. From the result, the detection frequency and mean concentration of lindane were all the highest among the three compounds. The concentrations measured of the three compounds in this study included just the dissolved phase. While they are the hydrophobic compound, studies had shown that the concentration should be associated with particulate matter (Venkatesan and Kaplan, 1990). Thus, the concentration and frequency of detection for selected compounds would likely have been reduced because of the sample filtration.

4. Conclusion

The present study reports the contamination status of lindane, p,p′-DDT and heptachlor epoxide in Chinese surface water and provided data on the levels of the three organochlorine pesticides. In general, the measured concentrations for the three compounds were low and rarely exceed the environment quality standard for surface water of China. For the three compounds, the lindane and p,p′-DDT are the major residue contaminants with higher detection frequency and concentration relative to heptachlor epoxide, and the detection frequency and concentration of lindane in surface water of China are much higher than those of p,p′-DDT and heptachlor epoxide. Comparison with other places of the world, the surface water of China was somewhat moderately contaminated by lindane and p,p′-DDT, while the surface water in China was only lightly polluted by the heptachlor epoxide because of its low concentration and detection frequency. In north China, the lindane and p,p′-DDT contamination mainly occurred in the Yellow River and Huaihe River basins. While in south China, the lindane and p,p′-DDT contamination mainly occurred in the estuaries of Yangtze River, Pearl River and Minjiang River. It is submit that the Yellow River basin, Huaihe River basin and estuaries of Yangtze River, Pearl River and Minjiang River should be given priority in terms of the prevention and control of contamination.

Acknowledgements

We sincerely thank Professor Shahamat U. Khan, the George Mason University, for critical reading of the manuscript and making a number of helpful suggestions. This work was supported by National Natural Science Foundation of China (20621703) and National Basic Research Program of China (2007CB407301, 2006CB403403).

References

Iwata H, Tanabe S, Sakai N, Nishimura A, Tatsukawa R. Distribution of persistent organochlorines in the oceanic air and surface sea water and the role of ocean on their global transport and fate. Environ Pollut 1994;85:15–33.

Salvaó V, Quintana XD, Hidalgo M. Monitoring of nutrients, pesticides, and metals in waters, sediments, and fish of a wetland, Archive Environmental Contamination. Toxicology 2006;51:377–86.

