Occurrence of polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls pollution in sediments from the Haihe River and Dagu Drainage River in Tianjin City, China

Hanxia Liu a,c, Qinghua Zhang a, Yawei Wang a, Zongwei Cai b,a, Guibin Jiang a,*

a State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
b Dioxin Analysis Laboratory, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
c Chinese Academy of Inspection and Quarantine, 3 Gaobeidian North Road, Chaoyang District, Beijing 100025, China

Received 30 May 2006; received in revised form 6 March 2007; accepted 26 March 2007
Available online 16 May 2007

Abstract

The pollution status of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in the sediments of Haihe River, which is the most polluted among the seven largest basins in China, Dagu Drainage River flowing through a chemical industry zone, and two other rivers flowing into Bohai Sea in Tianjin City, China were investigated. The concentrations of PCDD/Fs and PCBs in the sediments from the mainstream of Haihe River were 1.3–26 pg I-TEQ g⁻¹ dry weight (dw) and 0.07–0.54 pg TEQ g⁻¹ dw, respectively. Heavy PCDD/Fs and PCBs pollution, with 1264 pg I-TEQ g⁻¹ dw and 21 pg TEQ g⁻¹ dw, was found in sediment from Dagu Drainage River. The congener profiles of PCDD/Fs indicated that the principal contamination source was the production of pentachlorophenol (PCP) or PCP-Na in this area. The correlation between PCDD/Fs or PCBs and total organic matter (TOM) showed that PCDD/Fs or PCBs were independent on TOM.

© 2007 Published by Elsevier Ltd.

Keywords: PCDD/Fs; PCBs; Sediment; Haihe River; PCP; China

1. Introduction

With an area of 318,000 km² and flowing through many cities including Beijing and Tianjin, the Haihe River basin is the largest water system in northern China. Because of the rapid development of economy and explosion of city population, water pollution and shortage has become a stupendous obstacle to the sustainable development of the industry and agriculture in this area (Qin et al., 1998; Zhen et al., 1999). Now the Haihe River basin is the most polluted among the seven largest basins in China (Ding et al., 2005).

As a traditional base of chemical industry in China, Tianjin has produced chloralkli, technical HCH, lindane, chlorobenzene, and pentachlorophenol (PCP) for nearly 30–50 years (Gong et al., 2004; Hu et al., 2005). Although the production of PCP (Na) has been generally forbidden, it is still manufactured by one of plants in this area for controlling the spreading of snailborne schistosomiasis in the south of China. In 1999, about 342,000 tons alkali was produced and the capacity of chloralkali production in Tianjin was the second largest in China (Song, 2000, 2001). Many studies have reported that PCP production may be a very important source of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) (Hagenmaier and Hermann, 1987; Rappe et al., 1991; Bao et al., 1995; Zheng et al., 1997; Xu et al., 2000). Endemic chloracne among the workers in a plant located in this chemical industry zone had...
been noted since 1974 (Cheng et al., 1993). The prevalence of chloracne was 73.4% in total and 95.2% in trichlorobenzene tank area workers where PCDD/Fs levels were up to thousands of ppm. In addition, there are hundreds of small-scale chemical factories lacking of advanced technology and apparatus, which are potential contaminated sources in this area, including paper and pulp, printing and dyeing, leather, medicine, etc. (Zheng et al., 2001). Furthermore, abundant of wastewater is discharged without any treatment owing to the lack of adequate management and sewage treatment plants. The Dagu Drainage River is a channel especially used for wastewater discharge.

The pollutants, including heavy metal, organochlorine pesticides, 4-tert-octylphenol, 4-nonylphenol and bisphenol A etc., were found in Haihe River to be transported into Bohai Sea, which is located in the northeast of China, and seriously contaminate the marine environment (Jin et al., 2004; Shi et al., 2005; Yang et al., 2005). In addition, occurrence of PCDD/Fs and PCBs in mollusks and cores collected in or along Bohai Sea has been reported in several articles (Hu et al., 2005; Wan et al., 2005; Zhao et al., 2005).

It is generally accepted that sediments constitute a sink for the hydrophobic compounds including PCBs and PCDD/Fs. The contamination of sediments may pose an unacceptable risk to human through bioaccumulation or biomagnification. In order to assess the potential risk, the status of the pollution of PCBs and PCDD/Fs in sediments from Haihe River, Dagu Drainage River and two other rivers flowing into Bohai Sea were investigated. Since PCDD/Fs and PCBs are lipophilic organic compounds, the occurrence of PCDD/Fs or PCBs should in accord with TOM on the distance from sources. However, the correlation is disputed because concentrations of organic compounds in sediments are not all dependent on TOM of the sediments (Jeong et al., 2001; Buckley et al., 2004; Mai et al., 2005). Therefore, the correlation between TOM and the occurrence of PCDD/Fs or PCBs in this research were also investigated to study the disputed correlation between TOM and organic compounds.

2. Materials and methods

2.1. Sampling

Sampling locations are shown in Fig. 1. Ten sediment samples along the Haihe River and three sediments from Dagu Drainage River were collected in July 2003. Starting from three tributary rivers, Beiyun River, Ziya River and Nanyun River, Haihe River flows through Tianjin City into Bohai Sea. Samples of H1–H8 were collected from the tributaries or typical sites along the Haihe River, H9 and H10 were just separated with a floodgate located at the estuary of Haihe River. Dagu Drainage River flows through a chemical industry zone and three sampling sites were set along the river according to the location of the chemical factories in the chemical industrial area. In addition, as reference points, two samples from Yongdingxin River and Kaifaqu River flowing into Bohai Sea in Tianjin City were also collected in the estuaries in July 2003. Surface sediments (about 5 cm in depth) were collected with a grab sampler (Ekman grab, Wildlife Supply Company, Buffalo, US) and placed in pre-cleaned glass bottles. The samples were stored at $-20\^\circ_C$ until analysis.

Fig. 1. Map of the Haihe River basin, Dagu Drainage River in Tianjin and sampling sites location (A1 and A2 are not sampling sites, A1: Chemical industry area; A2: Tianjin Economic and Technological Development Area) H1–H10, N1–N3, K1 and Y1 were collected along Haihe River, Dagu Drainage River, Kaifaqu River and Yongdingxin River, respectively.
2.2. Chemical reagents and standard solutions

All solvents were of pesticide residue grade and were purchased from Fisher (Fair Lawn, USA). Silica gel (0.063–0.100 mm) was obtained from Merck (Darmstadt, Germany). Acidic alumina (150 mesh), Florisil (60–100 mesh) and Bio-Beams SX-3 were purchased from Aldrich (Milwaukee, USA), Riedel-de Haën (Seelze, German) and Bio-Rad (Richmond, USA), respectively. Standard solutions of PCDD/Fs and PCBs according to EPA methods 1613B (US EPA, 1997) and 1668A (US EPA, 1999) were obtained from Cambridge Isotope Laboratories (Andover, USA) and Wellington Laboratories (Guelph, Canada).

2.3. Sample analysis procedure

Detailed descriptions of the sample extraction and fractionation procedures have been reported elsewhere (Zhang and Jiang, 2005). Briefly, sediment samples were freeze-dried and 1–2 g dry samples were spiked with 13C-labeled surrogate standards prior to the 24-h Soxhlet extraction with toluene. All extracts were concentrated to about 2 ml for the following cleanup except the extract of sediment of site N3, of which only 10% due to its higher pollution was used for following analysis. The extract was then sequentially subjected to multi-layer silica gel and acid alumina chromatography columns for cleanup. Florisil was also used for separating the analytes into two groups. For sediment samples rich in high molecular weight interferences, which cause degradation of GC column performance, gel permeation chromatography (GPC) is very necessary to cleanup the PCB fraction by removing this kind of interferences (US EPA, 1999; Ahmed, 2003; Saito et al., 2004). The fractions of PCBs extracted from sediments collected from the site H9, H10 and Dagu Drainage River (N1–N3) were further purified by GPC. Recovery standards, 1613-IS (for PCDD/Fs) and 68A-IS (for PCBs) were added prior to the GC injection.

The quantification was performed on an Agilent 6890 gas chromatography coupled with an Autospec Ultima mass spectrometer operating in EI mode at 35 eV and trap current of 600 mA. Exactly 1 µl of sample extract was injected with a CTC PAL autosampler in splitless mode into a DB-5MS fused silica capillary column (60 m × 250 µm i.d. × 0.25 µm film thickness, Agilent, USA). Helium was used as carrier gas with a constant flow of 1.2 ml min⁻¹. Details of MS analysis and quality control have been described elsewhere (Liu et al., 2006a).

Seventeen 2,3,7,8-substituted chlorinated congeners of PCDD/Fs, 12 WHO-specified PCBs, six indicator PCBs (CB28, 52, 101, 138, 153 and 180) and CB209 were quantitatively determined. Total PCDD/Fs and PCBs were calculated using total area of all the peaks detected in selected isobaric ions. The quality control (QC) of the method following QC of US-EPA methods 1613B and 1668A met the criteria of acceptance specified in the US-EPA methods, which has been reported in detail elsewhere (Zhang and Jiang, 2005).

In addition, total organic matter (TOM) was determined by method of weight loss-on-ignition. A representative portion of the dry sediment was transferred into a pre-weighed crucible and sample weight was determined using an analytical balance. Samples were burned at 550 °C for 6 h in muffle furnace (A) to remove organic matter. After cooling in a desiccator, samples were reweighed (B). TOM was determined as follows:

\[
\text{TOM}(\%) = 100 - 100 \times \left(\frac{A - B}{A} \right)
\]

3. Results and discussion

The levels of PCDD/Fs and PCBs in sediments are shown in Table 1. The concentrations of total PCDD/Fs and total PCBs in the surface sediments of the sampling sites ranged from 151 to 556 961 pg g⁻¹ dw and 775 to 153 727 pg g⁻¹ dw, respectively. Though the pollution levels of PCBs were higher than those of PCDD/Fs in this study, the total TEQs for PCBs were far lower than PCDD/Fs because indicator PCBs with zero TEF dominated 88–97 percent contributions to total PCB congeners. Table 2 shows the total I-TEQ and WHO-TEQ for both PCDD/Fs and PCBs. TEQ were calculated based on the TEFs not only suggested by Ahlborg et al. (1994) but also revised WHO-TEFs for humans/mammals (Van den Berg et al., 1998) so as to compare pollution levels with other reported data. In addition, total WHO-TEQ for both PCDD/Fs and PCBs calculated based on the updated WHO-TEF were also list in Table 2 (Van den Berg et al., 2006).

3.1. Pollution levels of PCDD/Fs and PCBs in Haihe River

The concentration of total PCDD/Fs and TEQ in the surface sediments of the Haihe River and its tributary rivers ranged from 151 to 115 467 pg g⁻¹ dw and 1.3–26 pg I-TEQ g⁻¹ dw, respectively. Comparing with the previous reports about the PCDD/Fs in other river and coast sediments listed in Table 3, the levels of PCDD/Fs in Haihe River were not significant higher. Relatively higher concentrations were detected at the estuary (H10) and the Machangjian River (H8), one of tributary rivers of Haihe River. The total I-TEQ of PCDD/Fs and PCBs in H8 and H10 were 20 and 27 pg TEQ g⁻¹ dw, respectively, which have exceed the safe sediment value of 20 pg TEQ g⁻¹ dw suggested by Evers et al. (1996). Because both of estuary and Machangjian River flow through the chemical industry zone, the heavier pollution might come from the chemical industry. Therefore, three sediments (N1–N3) were collected along the Dagu Drainage River, which flows into Bohai Sea through the chemical industrial area. The determined concentrations of PCDD/Fs and PCBs (with TEQ) among three sediments (N1–N3) collected along the Dagu Drainage River, which
flows into Bohai Sea through the chemical industrial area, were up to 557 ng g⁻¹ dw (1264 pg I-TEQ g⁻¹ dw) and 154 ng g⁻¹ dw (21 pg TEQ g⁻¹ dw), respectively. These results indicate that the Dagu Drainage River is the most heavily polluted with levels of PCDD/Fs and PCBs significantly above the safe sediment level of 20 pg TEQ g⁻¹ dw.

Table 1
Concentrations of PCDD/Fs and PCBs in sediments from Haihe River, Dagu Drainage River, Kaifaqu River and Yongdingxin River (pg g⁻¹ dw)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
<th>K1</th>
<th>Y1</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2378-TCDF</td>
<td>1.5</td>
<td>0.8</td>
<td>2.8</td>
<td>3.0</td>
<td>1.8</td>
<td>1.4</td>
<td>1.2</td>
<td>1.4</td>
<td>1.1</td>
<td>1.7</td>
<td>0.4</td>
<td>2.4</td>
<td>7.6</td>
<td>0.9</td>
<td>74</td>
</tr>
<tr>
<td>2378-PeCDF</td>
<td>0.8</td>
<td>3.9</td>
<td>1.1</td>
<td>4.5</td>
<td>1.3</td>
<td>0.9</td>
<td>2.6</td>
<td>1.1</td>
<td>3.3</td>
<td>0.8</td>
<td>1.1</td>
<td>5.2</td>
<td>2.1</td>
<td>8.2</td>
<td>21</td>
</tr>
<tr>
<td>23478-PeCDF</td>
<td>1.0</td>
<td>3.1</td>
<td>1.5</td>
<td>3.6</td>
<td>0.8</td>
<td>1.6</td>
<td>0.3</td>
<td>3.2</td>
<td>1.8</td>
<td>2.9</td>
<td>0.2</td>
<td>0.5</td>
<td>8.1</td>
<td>61</td>
<td>94</td>
</tr>
<tr>
<td>23478-HxCDF</td>
<td>2.0</td>
<td>3.7</td>
<td>3.5</td>
<td>3.7</td>
<td>1.5</td>
<td>4.7</td>
<td>1.2</td>
<td>22</td>
<td>8.2</td>
<td>16</td>
<td>2.1</td>
<td>1.2</td>
<td>30</td>
<td>480</td>
<td>758</td>
</tr>
<tr>
<td>23478-HxCDF</td>
<td>1.9</td>
<td>3.0</td>
<td>1.8</td>
<td>3.0</td>
<td>1.0</td>
<td>2.0</td>
<td>0.8</td>
<td>4.2</td>
<td>1.0</td>
<td>2.8</td>
<td>0.6</td>
<td>0.8</td>
<td>7.2</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>234678-HxCDF</td>
<td>1.0</td>
<td>2.6</td>
<td>2.4</td>
<td>2.7</td>
<td>0.9</td>
<td>1.5</td>
<td>1.4</td>
<td>2.6</td>
<td>2.4</td>
<td>3.6</td>
<td>0.5</td>
<td>0.5</td>
<td>7.4</td>
<td>32</td>
<td>132</td>
</tr>
<tr>
<td>2378-HxCDF</td>
<td>0.7</td>
<td>1.2</td>
<td>0.7</td>
<td>1.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.9</td>
<td>0.1</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>13</td>
</tr>
<tr>
<td>234678-HpCDF</td>
<td>7.2</td>
<td>8.3</td>
<td>5.9</td>
<td>5.3</td>
<td>13</td>
<td>4.3</td>
<td>41</td>
<td>17</td>
<td>75</td>
<td>4.7</td>
<td>3.4</td>
<td>47</td>
<td>464</td>
<td>2721</td>
<td></td>
</tr>
<tr>
<td>23478-HpCDF</td>
<td>0.9</td>
<td>2.6</td>
<td>1.3</td>
<td>3.0</td>
<td>0.7</td>
<td>2.1</td>
<td>0.3</td>
<td>11</td>
<td>3.9</td>
<td>16</td>
<td>0.8</td>
<td>0.6</td>
<td>11</td>
<td>129</td>
<td>678</td>
</tr>
<tr>
<td>OCDF</td>
<td>17</td>
<td>26</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>14</td>
<td>122</td>
<td>84</td>
<td>583</td>
<td>11</td>
<td>9.9</td>
<td>123</td>
<td>223</td>
<td>32243</td>
</tr>
</tbody>
</table>

Table 2
TEQs for PCDD/Fs and PCBs using WHO-TEFs and I-TEFs (pg TEQ g⁻¹ dw)

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
<th>K1</th>
<th>Y1</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO-TEQ (PCDD/Fs) a</td>
<td>3.7</td>
<td>5.9</td>
<td>6.3</td>
<td>8.1</td>
<td>1.3</td>
<td>5.1</td>
<td>1.4</td>
<td>21</td>
<td>11</td>
<td>26</td>
<td>1.8</td>
<td>2.8</td>
<td>38</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>WHO-TEQ (PCBs) a</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>2.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Total WHO-TEQ a</td>
<td>3.9</td>
<td>6.3</td>
<td>6.5</td>
<td>8.7</td>
<td>1.4</td>
<td>5.3</td>
<td>1.5</td>
<td>22</td>
<td>11</td>
<td>26</td>
<td>1.8</td>
<td>2.8</td>
<td>38</td>
<td>21</td>
<td>56</td>
</tr>
</tbody>
</table>

H1–H10 from Haihe River, N1–N3 from Dagu Drainage River, K1 from Kaifaqu River and Y1 from Yongdingxin River.

Table 2
TEQs for PCDD/Fs and PCBs using WHO-TEFs and I-TEFs (pg TEQ g⁻¹ dw)

<table>
<thead>
<tr>
<th>Sampling sites</th>
<th>H1</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>H6</th>
<th>H7</th>
<th>H8</th>
<th>H9</th>
<th>H10</th>
<th>K1</th>
<th>Y1</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO-TEQ (PCDD/Fs) a</td>
<td>3.7</td>
<td>5.9</td>
<td>6.3</td>
<td>8.1</td>
<td>1.3</td>
<td>5.1</td>
<td>1.4</td>
<td>21</td>
<td>11</td>
<td>26</td>
<td>1.8</td>
<td>2.8</td>
<td>38</td>
<td>21</td>
<td>56</td>
</tr>
<tr>
<td>WHO-TEQ (PCBs) a</td>
<td>0.2</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.6</td>
<td>2.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Total WHO-TEQ a</td>
<td>3.9</td>
<td>6.3</td>
<td>6.5</td>
<td>8.7</td>
<td>1.4</td>
<td>5.3</td>
<td>1.5</td>
<td>22</td>
<td>11</td>
<td>26</td>
<td>1.8</td>
<td>2.8</td>
<td>38</td>
<td>21</td>
<td>56</td>
</tr>
</tbody>
</table>

a Van den Berg et al. (1998).
b Ahlborg et al. (1994).
c Van den Berg et al. (2006).
PCDD/Fs in sediments collected from Dagu Drainage River were significantly higher than other areas except for the Venice lagoon (Table 3). The pollution of PCDD/Fs and PCBs were sharply increased along the flow direction of Dagu Drainage River, indicating that the pollutions might come from the chemical industry. In addition, it was reported that the concentrations of mercury and organochlorine pesticides in sediments from Dagu Drainage River were also very high (Shi et al., 2005; Yang et al., 2005). Therefore, more attention should be paid and further investigation should be done for this area. The pollution levels of PCBs, 0.07–0.54 pg I-TEQ g\(^{-1}\) dw, were very low in Haihe River. Significant PCBs pollution was found in N3 with 21 pg I-TEQ g\(^{-1}\) dw, beyond the safety level of sediment.

PCDD/Fs and PCB levels in site H10 were higher than that of site H9. These two sites, H9 and H10, were just separated with a floodgate at the estuary of Haihe River. The potential pollution might come from the sewage outlet of the Dagu Drainage River at the south of H10. The estuary of Haihe River might be polluted easily by the effluents of Dagu Drainage River (Jin et al., 2004). Also, as shown in Fig. 2, similar congener profile was found between sites of H10 and N3. However, H9 was less contaminated due to the protection of the floodgate. Moreover, this result is accord with the report (Liu et al., 2006b), in which higher levels of PCP were found in sea than in river due to the salinity change between them.

In addition, samples collected from Kaifaqu River and Yongdingxin River, as reference points, were also analyzed to assess the pollution level of rivers flowing into Bohai Sea in Tianjin City sediment. Low levels of PCDD/Fs and PCBs were detected in these two rivers with TEQ of 1.8 and 0.08, 2.7 and 0.10 pg I-TEQ g\(^{-1}\) dw, respectively.

3.2. Profile and possible sources of PCDD/Fs

Similar congener profile, in which OCDD was the most abundant congener followed by OCDF and 1,2,3,4,6,7,8-HpCDD, was found throughout Haihe River. The profile of PCDD/Fs in Haihe River, Dagu Drainage River and two other rivers in Tianjin is in accord with the profiles reported in other sediments of rivers (Eljarrat et al., 2005; Hu et al., 2005; Zhang and Jiang, 2005).Percentage contributions of OCDD, HpCDD and OCF to the total-PCDD/Fs were shown in Fig. 2. The profiles of PCDD/Fs in the tested sediments were consisted with the profile of main dominant congeners of impurities (OCDD (76\%) as well as OCF (10\%) and 1,2,3,4,6,7,8-HpCDD (10\%)) in PCP and PCP-Na (Bao et al., 1995). Higher percentages of OCDD were found in sites of H9, H10 and N3. These three sampling sites were all at the downstream of the rivers flowing through the chemical industrial area where the PCP and PCP-Na have been manufactured for nearly half a century. Moreover, relatively higher or significant high concentrations were detected at the sampling sites located around the chemical industrial areas. In view of that, the source of the heavier PCDD/Fs pollutions in this area might come from the effluent of PCP and PCP-Na production.

3.3. Correlation between PCBs/PCDD/Fs and TOM

TOM in the 13 sediment samples except the three sediment samples collected from Dagu Drainage River, N1–N3 neared to pollution resource, was determined. The relationship between the concentration of PCBs and the data of TOM was investigated and presented in Fig. 3. The linear regression correlation between PCBs and TOM was 0.34. Thus, the concentrations of PCBs were

Table 3

Levels of PCDD/Fs and PCBs in surface sediments from rivers and coasts

<table>
<thead>
<tr>
<th>Location</th>
<th>PCDDs (pg g(^{-1}) dw)</th>
<th>TEQ (pg g(^{-1}) dw)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PCDDs</td>
<td>PCDFs</td>
<td>PCBs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haihe River, China</td>
<td>151–556961</td>
<td>775–153727</td>
<td>1.4–19(a)</td>
</tr>
<tr>
<td></td>
<td>1.3–26(b)</td>
<td></td>
<td>0.07–0.54(b)</td>
</tr>
<tr>
<td>Dagu Drainage River, China</td>
<td>1962–556961</td>
<td>44266–153727</td>
<td>21–893(a)</td>
</tr>
<tr>
<td></td>
<td>19–1264(b)</td>
<td></td>
<td>1.2–21(b)</td>
</tr>
<tr>
<td>Taihu Lake, China</td>
<td>120.1–1315.1</td>
<td>889.7–29747.8</td>
<td>0.83–17.72(a)</td>
</tr>
<tr>
<td>Yaer Lake, China</td>
<td>3918–13845</td>
<td>–</td>
<td>10–420(b)</td>
</tr>
<tr>
<td>Coast, Hong Kong</td>
<td>310–11000</td>
<td>–</td>
<td>3.0–33(b)</td>
</tr>
<tr>
<td>Tokyo Bay, Japan</td>
<td>–</td>
<td>–</td>
<td>3.1–49(b)</td>
</tr>
<tr>
<td>River Po, Italy</td>
<td>121–814</td>
<td>–</td>
<td>1.3–13(b)</td>
</tr>
<tr>
<td>Hyeongsan River, Korea</td>
<td>2.6–1200</td>
<td>2.2–640</td>
<td>10–10000</td>
</tr>
<tr>
<td>Venice Lagoon, Italy</td>
<td>16–15642</td>
<td>49–126561</td>
<td>2–2049</td>
</tr>
<tr>
<td>Southern Mississippi, USA</td>
<td>1.7–7206</td>
<td>0.06–126</td>
<td>1.3–619</td>
</tr>
<tr>
<td>Coast, Spain</td>
<td>121–12037</td>
<td>22–30007</td>
<td>0.1–48(a)</td>
</tr>
<tr>
<td>Harbour of Hamburg, Germany</td>
<td>–</td>
<td>–</td>
<td>25.6–174.2(b)</td>
</tr>
</tbody>
</table>

\(a\) Van den Berg et al. (1998).

\(b\) Ahlborg et al. (1994).
independent on the TOM of sediments. It is in accord with the result reported by Buckley et al. (2004) and Mai et al. (2005). But it differs from that of Jeong et al. (2001), in which significant correlation was found between PCBs and total organic carbon.

The relationship between PCDD/Fs and TOM was similar to that between PCBs and TOM with correlation coefficient of 0.21.

4. Conclusions

The pollution resource of PCDD/Fs and PCBs in sediments from Bohai Sea and the pollution status of PCDD/Fs and PCBs in rivers in Tianjin City were investigated. The levels of PCDD/Fs and PCBs in Haihe River were lower than the value of safe sediment for samples from all sampling sites except for sites of H8 and H10. Comparing with the levels reported in literatures, significant contamination of PCDD/Fs and PCBs was found in Dagu Drainage River. The pollution source of PCBs could not be identified. But congener profiles of PCDD/Fs indicate that the production of PCP or PCP-Na may be one source of PCDD/Fs in this area.

Acknowledgements

This work is jointly supported by National Basic Research Program of China (2003CB415001), the Distinguished Young Scholar Award of the National Science Foundation of China (20329701) and National Natural Science Foundation of China (20607025).

References

