Surface reaction of *Bacillus cereus* biomass and its biosorption for lead and copper ions

PAN Jian-hua, LIU Rui-xia, TANG Hong-xiao*

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: ph311@yahoo.com.cn

Received 30 March 2006; revised 25 April 2006; accepted 29 April 2006

Abstract

In this study, the surface chemical functional groups of *Bacillus cereus* biomass were identified by Fourier transform infrared (FTIR) analytical technique. It had been shown that the *B. cereus* cells mainly contained carboxyl, hydroxyl, phosphate, amino and amide functional groups. The potentiometric titration was conducted to explain the surface acid-base properties of aqueous *B. cereus* biomass. The computer program FITEQL 4.0 was used to perform the model calculations. The optimization results indicated that three sites-three pKₐ's model, which assumed the cell surface to have three distinct types of surface organic functional groups based on the IR analysis results, simulated the experimental results very well. Moreover, batch adsorption experiments were performed to investigate biosorption behavior of Cu(II) and Pb(II) ions onto the biomass. Obviously, the adsorption equilibrium data for the two ions were reasonably described by typical Langmuir isotherm.

Key words: *Bacillus cereus*; biosorption; Fourier transform infrared (FTIR); acid-base characteristic; heavy metals

Introduction

Bacteria are common in many geologic environments where they represent a significant proportion of the overall surface area exposed to fluids containing dissolved solutes. Their cell walls contain a variety of surface organic functional groups, which exhibit a high affinity to bind metals (Beveridge and Murray, 1976, 1980; Fein *et al*., 1997; Daughney *et al*., 2002) and other chemical species (Daughney and Fein, 1998a; Fein and Delea, 1999). The ubiquity of bacterial cells in near-surface fluid-rock systems and their ability to bind chemicals play a significant role in many geochemical processes. They also help in the subsurface transport of contaminants (Corapcioglu and Kim, 1995), the accumulation of metal deposits (Savvinchev *et al*., 1986), mineralization, and fossilization of microorganisms (Ferris *et al*., 1988; Konhauser *et al*., 1993; Fortin *et al*., 1997; Warren and Ferris, 1998).

Heavy metals are present in nature and industrial wastewater. Due to their mobility in the natural water ecosystem and their toxicity to organisms, the presence of heavy metals in surface and groundwater causes a major inorganic contamination problem that is of worldwide concern (Chang *et al*., 1996). The behavior, transport, and ultimate fate of heavy metal in natural systems depend largely on the sorption with microorganisms, such as bacteria, fungi, and yeast (Beveridge and Doyle, 1989; Poole and Gadd, 1989). It has been reported that different types of biomass were capable of efficiently accumulating heavy metal ions (Volesky and Holan, 1995). One of the most important types of biosorbents is bacteria biomass. The adsorption of heavy metals onto bacterial cell walls has received considerable attention in recent experimental and modeling studies, including several studies utilizing site-specific surface complexation approaches (Fein and Delea, 1997; Daughney and Fein, 1998b; Daughney *et al*., 1998, 2002). As an essential part of describing these biosorption phenomena, the investigations on the cell surface appearance, chemical functional groups identification, and acid-base characteristics of the biomass are necessary for predicting metal biosorption behavior in the water system and modifying metal biosorption property. Therefore, acid-base titration and metal adsorption experiments were carried out to explore the microbial surface site reactions and thermodynamic properties of the organic functional groups, which are displayed on *Bacillus cereus* cell wall surfaces. An attempt was also made to analyze the functional groups of bacterial surface using Fourier transform infrared (FTIR); the knowledge of these functional groups could be employed to explain the more probable mechanism of metal immobilization on the cell wall.

1 Materials and methods

1.1 Metal solutions

Metal salts used for the batch adsorption experiment were of analytical reagent grade: Pb(NO₃)₂, Cu(NO₃)₂.
Separate stock metal solutions were made at a level of 1000 mg/L by dissolving an appropriate amount of individual metal in water with nitric acid. Working standards with a range of metal concentrations were prepared by diluting the stock solution. Medium pH values were adjusted using guaranteed reagent grade NaOH and HNO₃ solution. Distilled deionized (DDI) water was used in all the experiments.

1.2 Bacterial growth and preparation

B. cereus was isolated from natural waters near Guanting Reservoir, Hebei Province, China. Bacteria cells were cultured in 600 ml of nutrient broth for 72 h with growth condition: pH 7.2–7.5, temperature 30°C, and stirring speed of 160 r/min. The bacteria were then harvested from the growth media by centrifugation at 7000 r/min for 30 min, rinsed 4–6 times in DDI water. The biomass was freeze-dried at –50°C and the pressure was reduced for 24 h with a freeze dryer (ALPHA 1-2 LD, Christ, Germany). The species of *B. cereus* is a gram-positive bacterium.

1.3 Biosorption isotherm

The batch biosorption experiments were carried out to determine the equilibrium distribution of lead and copper between the aqueous phase and biomass. In the experiments, an aqueous solution containing a known concentration (5–100 mg/L) of either Pb(II) or Cu(II) in a 0.01-mol/L NaNO₃ electrolyte was placed in contact with a biomass concentration of 1 g/L. *B. cereus* cells, and the desired pH value was adjusted using a small volume of 0.1 mol/L HNO₃ or 0.1 mol/L NaOH (pH = 5.5). The mixture was then agitated on a shaker at 25°C for 24 h, which was more than ample time for adsorption equilibrium, based on the results of the previous kinetics experiments. After 24 h of equilibration, the bacterial suspensions were separated by centrifugation and the supernatant was analyzed for dissolved metal content via flame atomic absorption spectrophotometer (AAS, Hitachi, Z-6100).

1.4 FTIR analysis of biomass

To complete the study of functional groups, an IR analysis was performed with a FTIR spectrometer (Thermo Nicolet Nexus 670 FTIR, GMI, USA). 5 mg of dried bacteria biomass was mixed and ground with 150 mg of KBr (Spectral) in an agate mortar. The translucent disks were prepared by pressing the ground material with the aid of 8-t pressure bench press. The tablet was immediately analyzed using a spectrophotometer in the range of 4000–400 cm⁻¹ with a resolution of 4 cm⁻¹. The influence of atmospheric water and CO₂ were always subtracted.

1.5 Potentiometric titration of biomass

A certain amount of 3 g/L biomass stock suspension was added to a 100-ml flask, and 1 mol/L NaNO₃ was used to stabilize the system at a fixed ionic strength. A total batch volume of 90 ml was made up by adding DDI water (Table 3 for experimental run conditions). The suspension was stirred magnetically and continually bubbled with N₂ for 60 min in order to purge CO₂ until the pH value was constant. Afterward, 0.05005 mol/L HNO₃ was added using a Metrohm 716 DMS autotitrator and the equilibrium pH value of the suspension became lower than 3 so that the biomass was converted to hydrogen form. The back titration process was conducted with 0.04898 mol/L NaOH until the pH of the suspension was raised to about 11. During the titration procedure, N₂ was bubbled throughout the experiment process and the mixture was stirred magnetically, the temperature being held constant at 25±0.5°C. The equilibrium criterion for each addition of the titrant was that the drift of the measured potential should be below 1 mV/min or equilibrium 90 s. For each experiment, the corresponding blank titration was carried out on a solution of the background electrolyte (NaNO₃ solution) with the same procedure as the sample except for the presence of the biomass phase.

2 Results and discussion

2.1 Biosorbtion isotherm

The results of the Pb (II) and Cu (II) adsorption experiments are shown in Fig.1. The analysis of these isotherm data is important to develop an equation, which accurately represented the results and for designing purposes. To fit the sorption data, the Freundlich and Langmuir isotherm models (Oztürk et al., 2004) were applied to this study.

The linearized Freundlich isotherm model is described by the following equation:

\[
\log q = \log k + \frac{1}{n} \log C_e
\]

(1)

Where, \(C_e\) is the equilibrium concentration of heavy metal in the solution (mol/L), \(q\) is the adsorption capacity at equilibrium (mg/g), \(n\) is the Freundlich constant related to the energy of adsorption and \(k\) is a constant. The values of \(k\) and \(1/n\) are evaluated from the intercept and the slope, respectively, of the linear plot of \(\log q\) versus \(\log C_e\) based on experimental data.

The linearized Langmuir isotherm model represented by the equation:

\[
\frac{1}{q} = \frac{1}{b Q_{max}} + \frac{1}{C_e Q_{max}} \frac{1}{Q_{max}}
\]

(2)

![Fig. 1 Isotherms for the equilibrium binding of Pb (II) and Cu (II) on B. cereus biomass (initital pH 5.5).](image-url)
Where, \(b \) is the Langmuir parameter (affinity constant of metal-active site species) (L/mol) and \(Q_{\text{max}} \) is the maximum adsorption capacity (mg/g). These constants are evaluated from the slope and the intercept of the linear plot of \(1/q \) versus \(1/C_a \), based on experimental data.

Adsorption constants, metal-binding constant, and correlation coefficients for the metals, which were calculated from Langmuir, Freundlich isotherms are shown in Table 1. The fitted results indicate the Langmuir isotherm can provide the better description of the adsorption process. The linearized adsorption data with respect to both metals are shown in Figs. 2a and 2b.

2.2 Fourier transform infrared spectroscopy

In order to understand better the nature of the functional groups responsible for the biosorption, FT-IR analysis of the biomass \(B.\ ceresus \) was carried out. The spectrum of the biomass is shown in Fig. 3 and the IR adsorption bands with corresponding possible groups are shown in Table 2. The spectrum (Fig. 3) exhibits a broad absorption band between 3500 and 3200 cm\(^{-1}\) due to bonded –OH stretching vibration, and in this range, stretching vibration of –NH groups located at 3306.48 cm\(^{-1}\) can be observed. The peak at 2930.84 cm\(^{-1}\) is the indicator of alkyl chains –CH stretching vibration. The C=O of the carboxylic groups or esters groups stretching vibration, appears at 1728.68 cm\(^{-1}\). The typical amide I band, C=O stretching vibration, appears strongly at 1655.19 cm\(^{-1}\). The peak at 1544.20 cm\(^{-1}\), known as amide II, is contributed to a motion combining both the –NH bending and the –CN

Table 1 Adsorption isotherm parameters for Pb (II) and Cu (II) ions on \(B.\ ceresus \)

<table>
<thead>
<tr>
<th>Metal ion</th>
<th>Langmuir isotherm</th>
<th>Freundlich isotherm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Q_{\text{max}})</td>
<td>(b)</td>
</tr>
<tr>
<td>Lead (II)</td>
<td>36.71</td>
<td>0.129</td>
</tr>
<tr>
<td>Copper (II)</td>
<td>50.32</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Table 2 IR adsorption bands and corresponding possible groups

<table>
<thead>
<tr>
<th>Frequency (cm(^{-1}))</th>
<th>Functional group</th>
<th>Frequency (cm(^{-1}))</th>
<th>Functional group</th>
</tr>
</thead>
<tbody>
<tr>
<td>3306.48</td>
<td>–OH, –NH</td>
<td>1453.60</td>
<td>–CH</td>
</tr>
<tr>
<td>2930.84</td>
<td>–CH</td>
<td>1381.11</td>
<td>COO(^-), C=O</td>
</tr>
<tr>
<td>1728.68</td>
<td>COO(^-), C=O</td>
<td>1291.09</td>
<td>–C=O, P=O, S=O, COO(^-)</td>
</tr>
<tr>
<td>1655.19</td>
<td>C=O</td>
<td>1184.29</td>
<td>C=O, N, P=O, C</td>
</tr>
<tr>
<td>1544.20</td>
<td>COO(^-), –C(=O)–NH–, C=O</td>
<td>1055.95</td>
<td>P=O</td>
</tr>
</tbody>
</table>

Fig. 2 Pb (II) and Cu (II) sorption isotherms on \(B.\ ceresus \) biomass according to linearized Langmuir model (a) and Freundlich model (b).

Fig. 3 IR spectrum of \(B.\ ceresus \) biomass.
2.3 Determination of total surface site concentration

In certain previous studies (Stadler and Schindler, 1993; Chorover and Sposito, 1995; Ludwig and Schindler, 1995; Du et al., 1997; Liu et al., 1999), in-situ Gran plots were utilized to determine the standard electrode potential and the volume of titrant added at the equivalence point for the potentiometric titration of suspension systems. In this study, the Gran plots for B. cereus biomass suspension system, as shown in Fig.4, were adopted to ascertain the specific volume of the titrant added at the equivalence point (V_e), furthermore, to calibrate zero titration point and to calculate the total surface site concentration. For the hydroxide back titration, the Gran plots are obtained by plotting Gran function (G) versus the volume of added sodium hydroxide solution (V_b), and Gran functions (Gran, 1952) are expressed as:

Acidic side: $G = \frac{(V_0 + V_{at} + V_b) \times 10^{E/59}}{157}$ (3)

Alkaline side: $G = \frac{(V_0 + V_{at} + V_b) \times 10^{-E/59}}{157}$ (4)

where, V_0 is the initial volume of suspension (ml), V_{at} is the total volume of HNO$_3$ added in the acid titration (ml), and E is the potential of glass electrode (mV).

On the basis of the above-mentioned Gran plots, the biomass suspension system of the hydroxide back titration procedure, the added OH$^-$ successively participates in the following processes: acid-base neutralization with excess H$^+$ in solution (before V_{e1}), binding to the various active sites on the biomass interface (between V_{e1} and V_{e2}), and adjustment of the pH value of the suspension system (after V_{e2}). The specific volumes, V_{e1} and V_{e2}, obtained from results of linear regression analysis of Gran plots, corresponded to the equivalent points. Furthermore, V_{e1} was considered as the zero titration point (ZTP) of the suspension system because of only acid-base neutralization occurring in solution phase before the point. For each titration point, the total concentration of consumed protons (TOTH) was calculated by the following equation:

$$TOTH = -(V_b - V_{e1}) \times C_b / (V_0 + V_{at} + V_b)$$ (5)

where, C_b is the concentration of NaOH (mol/L). The hydroxide titration data after the calibration of ZTP were used in the FITEQL 4.0 program to calculate the surface acidic constants.

According to the Gran plot, the total surface site concentration (H_s, mol/L) could be calculated from the two equivalence points V_{e1} and V_{e2} using the following equation:

$$H_s = \frac{(C_b \times (V_{e2} - V_{e1})_{sample} - (C_b \times (V_{e2} - V_{e1})_{blank})}{V_0}$$ (6)

All the results are shown in Table 3.

2.4 Biomass surface acid-base reaction models

IR analysis of biomass has proven that the B. cereus cell exhibits active carboxyl, hydroxyl, phosphate, and amino or amide functional groups. The acid-base behavior of this bacterium is due to the reaction of functional groups on the cell wall with the change in pH value. In simulating the surface reaction of B. cereus biomass, two surface protonation models are proposed to evaluate the model that best describes the experimental data of systems with different biomass concentrations and ionic strengths. More details concerning model description are shown in Table 3 and Fig.5.

Fig. 4 Gran plots for different titration system. (a) 0.5 g bacteria/L in 0.1 mol/L NaNO$_3$; (b) 1 g bacteria/L in 0.1 mol/L NaNO$_3$; (c) 0.5 g bacteria/L in 0.01 mol/L NaNO$_3$; (d) 1 g bacteria/L in 0.01 mol/L NaNO$_3$.
Surface reaction of *Bacillus cereus* biomass and its biosorption for lead and copper ions

Fig. 5 Model curves of potentiometric titration for the biomass and corresponding experimental data. (a) 0.5 g bacteria/L in 0.1 mol/L NaNO₃; (b) 1 g bacteria/L in 0.1 mol/L NaNO₃ and (c) 0.5 g bacteria/L in 0.01 mol/L NaNO₃, (d) 1 g bacteria/L in 0.01 mol/L NaNO₃.

Table 3 Surface characteristic parameters of *B. cereus* biomass for various systems

<table>
<thead>
<tr>
<th>System</th>
<th>Hₛ×10⁻⁴ (mol/L)</th>
<th>One site-two pKₐₛ model (I)</th>
<th>Three sites-three pKₐₛ model (II)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pKₐ¹</td>
<td>pKₐ₂</td>
</tr>
<tr>
<td>0.5 g/L biomass in 0.1 mol/L NaNO₃</td>
<td>17.59</td>
<td>2.73</td>
<td>6.89</td>
</tr>
<tr>
<td>1 g/L biomass in 0.1 mol/L NaNO₃</td>
<td>36.89</td>
<td>1.26</td>
<td>7.67</td>
</tr>
<tr>
<td>0.5 g/L biomass in 0.01 mol/L NaNO₃</td>
<td>15.92</td>
<td>2.31</td>
<td>7.42</td>
</tr>
<tr>
<td>1 g/L biomass in 0.01 mol/L NaNO₃</td>
<td>27.84</td>
<td>1.28</td>
<td>7.62</td>
</tr>
</tbody>
</table>

Surface area is about 119.32 m²/g dry biomass, calculated from cell geometry; Vᵧ: model variance.

2.4.1 One site-two pKₐₛ model

This surface protonation model is typically used in surface complexation models to study the surface acidic behaviors of solid/water systems (Motta and Miranda, 1989; Wieland and Stumm, 1992). It assumes that the solid interface is homogenous, and that two acidic reactions, one protonation and one deprotonation (as shown in Eqs. (7) and (8)), occur at the amphoteric surface hydroxyl groups (≡ROH). The amphoteric properties of the cell surface can be simplified by the following equations:

\[
\equiv R–OH^+ \rightleftharpoons \equiv R–OH + H^+ \quad K_{a1} \quad (7)
\]

\[
\equiv R–OH \rightleftharpoons \equiv R–O^- + H^+ \quad K_{a2} \quad (8)
\]

where, ≡R is bacterial cell wall, Kₐ₁ and Kₐ₂ are equilibrium constants of Eqs. (7) and (8).

2.4.2 Three sites-three pKₐₛ model

This model is established based on the IR analysis results. *Bacillus cereus* biomass is known to display active carboxyl, hydroxyl, phosphate, amino, and amide functional groups. However, the amine groups are much lesser in number than the other groups. In the model, the active sites of the biomass surface are heterogeneous, and are assumed to contain three distinct types of surface sites with different affinities. The deprotonation reactions of these sites are expressed as:

\[
\equiv R–COOH \rightleftharpoons \equiv R–COO^- + H^+ \quad K_{a3} \quad (9)
\]

\[
\equiv R–PH \rightleftharpoons \equiv R–PO^- + H^+ \quad K_{a4} \quad (10)
\]

\[
\equiv R–OH \rightleftharpoons \equiv R–O^- + H^+ \quad K_{a5} \quad (11)
\]

where, Kₐ₃, Kₐ₄ and Kₐ₅ are equilibrium constants of Eqs. (9), (10), and (11).

In this study, experiments on systems with two biomass concentrations (0.5 and 1 g/L) of different ionic strengths were conducted. Fig.5 shows that both Model I and Model II fit very well with all experimental data of the studied systems. After the comparison of the two models variance (Vᵧ) which is an indicator of the goodness of fit, it can be shown that the experimental data are better described by three sites-three pKₐₛ model than other models. For each studied system, the Vᵧ of three sites-three pKₐₛ model varies in the range of 4.58 and 9.89, indicating an excellent correlation between the model and experimental data.
3 Conclusions

IR spectroscopy result shows that the rod-shaped \textit{B. cereus} cell mainly contains carboxyl, hydroxyl, phosphate, amino, and amide functional groups. Based on the results of potentiometric titration experiments and surface complexation model calculation, it is shown that three sites-three \(pK_a \) model, as described by the surface reactions, can reasonably describe the surface acid-base behaviors of \textit{B. cereus} biomass/water system. The Langmuir isotherm can yield the best fit to absorption experimental data for two metals on the biomass.

References

Daughney C J, Fein J B, 1998b. The effect of ionic strength on the adsorption of \(H^+ \), \(Cd^{2+} \), \(Pb^{2+} \), and \(Cu^{2+} \) by \textit{Bacillus subtilis} and \textit{Bacillus licheniformis}: a surface complexation[J]. J Colloid Interface Sci, 198: 53–77.

