Eco-Environmental benefit assessment of the western route in China's South-North Water Transfer Project

Rongjin Yang, Guohua Liu, Jingzhu Zhao & Bojie Fu

To cite this article: Rongjin Yang, Guohua Liu, Jingzhu Zhao & Bojie Fu (2005) Eco-Environmental benefit assessment of the western route in China's South-North Water Transfer Project, International Journal of Sustainable Development & World Ecology, 12:4, 461-470, DOI: 10.1080/13504500509469654

To link to this article: http://dx.doi.org/10.1080/13504500509469654
Eco-Environmental benefit assessment of the western route in China’s South-North Water Transfer Project

Rongjin Yang, Guohua Liu, Jingzhu Zhao, Bojie Fu

Key Laboratory of Systems Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. BOX 2871, Beijing 100085, China

Key words: Benefit assessment, China, eco-environment, water transfer; South-North Water Transfer, Western Route Project

SUMMARY

Assessing the benefits of China’s South-North Water Transfer project (SNWT) requires successful integration of an analysis of economic and eco-environmental benefits (EEB). To attain such integration, it is necessary to assess the EEB in detail, after the economic benefits have also been thoroughly assessed. The shadow engineering and market value methods are the major EEB assessment methods used in this study. We have assessed the EEB of the forest and grassland ecosystems in the recipient regions of the Western Route Project (WRP) for 2020, 2030 and 2050. Finally, some proposals are also made for efficient and sustainable management of the WRP.

INTRODUCTION

Water is one of the most important natural resources for the survival and development of humanity, integral to all environmental and social processes. Freshwater is scarce in China and the world in general (Björklund and Kuylenstierna 1998; Arnell 1999; Varis and Vakkilainen 2001). Socio-economic development and rapid population growth have made the situation worse, especially in northwest China (Feng and Cheng 1998). It is necessary to explore alternatives to alleviate this rapidly deteriorating and critical situation. One possibility is to transfer water over long distances from surplus to deficit areas. Already, many projects exist that divert water from one region to another (Golubev and Biswas 1979; Biswas et al. 1983; Snaddon et al. 1998; Feldman 2001). China’s South-North Water Transfer (SNWT) is among the largest water transfer projects in the world. There are three planned routes in SNWT – the eastern, middle and western routes (Yao and Chen 1983). The western route project (WRP) is the focus of this paper. The necessity and feasibility of the WRP in terms of engineering and economics has already been discussed (Li et al. 2000; Jia 2001). However, other aspects should be considered, especially the social and environmental aspects (Biswas et al. 1983; Bruk 2001). The influence of the WRP on the eco-environment has also been considered (Song 1995; Qu 2001; Shang et al. 2001; Liu 2002; Wang 2002). The benefits to agricultural irrigation, domestic consumption and waterpower have been analyzed (Han et al. 1998). However, little attention...
has been paid to the eco-environmental benefits. Our objective is to assess the eco-environmental benefits (EEB) of the recipient regions in the WRP.

General layout of the WRP

To assess the EEB in recipient regions, it is necessary to review the basic status of the WRP and its recipient regions. The WRP will perform two important functions: (1) to supply water directly to users (agricultural, industrial, domestic), and (2) to add water to the mainstream of the Yellow River. The WRP will be completed in three stages:

1. The Da-Jia Line. This will lead from branches of the Da-Qu and Ni-Qu Rivers on the Ya-Long River to a branch of the Jia-Qu River, part of the Yellow River, via branches of the Du-Ke, Ma-Er-Qu and A-Ke Rivers on the Da-Du River. The amount of transferred water will be about four thousand million m3 by the year 2020.

2. The A-Jia Line. This will lead from A-Da on the Ya-Long River to a Yellow River tributary, the Jia-Qu River. The amount of transferred water will be about five thousand million m3.

3. The Ce-Jia Line. This will lead from Ce-Fang on the Tong-Tian River to a Yellow River tributary, the Jia-Qu River. The amount of transferred water will be about eight thousand million m3.

Consequently, by 2050, the total amount of transferred water will be about seventeen thousand million m3 (Figure 1, Table 1) (Hu et al. 2001; Zhang et al. 2001). The main goal of the WRP is to resolve the problem of water deficiency in northwest China and to meet basic water use demands (especially the eco-environmental water demand) within the next 50 years in six provinces (Qinghai, Gansu, Ningxia, Shannxi, Shanxi and Inner Mongolia) of the upper and middle reaches of the Yellow River and its

Table 1 The water amount for different stages of the WRP (unit: hundred million m3)

<table>
<thead>
<tr>
<th></th>
<th>For industry and living</th>
<th>For eco-environment</th>
<th>For agricultural irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First stage (in 2020)</td>
<td>23</td>
<td>17</td>
<td>–</td>
</tr>
<tr>
<td>Second stage (in 2030)</td>
<td>45</td>
<td>58</td>
<td>7</td>
</tr>
<tr>
<td>Third stage (in 2050)</td>
<td>107</td>
<td>53</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 1 Sketch map of the Western Route project of the South-North Water Transfer project
adjacent regions (Hexi corridor) (Zhang et al. 2001). Besides the agricultural ecosystem, forest and grassland are the main ecosystem types prevalent in the region. In this paper, the water amount for the eco-environment will be assigned to the forest and grassland ecosystems. The benefits to the forest and grassland ecosystems will be assessed individually. The benefits to industry, livelihoods and agricultural irrigation are not discussed here (Han et al. 1998).

Recipient regions in the WRP

The major recipient regions in the WRP (Figure 2) are located in the upper and middle reaches of the Yellow River, and constitute ecotones in China (Chang et al. 1999; Zhang et al. 2001). Their eco-environment has been seriously damaged. The situation is likely to become worse because of water deficit, rapid population growth and even more rapid economic development (Zhang and Xie 1999; He et al. 2000). The main eco-environmental problems are:

1. Desertification. China is one of the most severely desertified countries in the world. Approximately 400 million people and 3.3 million km² of land have been affected (Chen et al. 1996; Zha and Gao 1997), and desertified areas expanded at an annual rate of 2103 km² in the 1980s (Shou et al. 1992). The recipient regions for the water are among the most seriously desertified regions in China. Desertification has caused serious environmental problems, such as reduced soil fertility, damaged soil structure and reduced vegetation.

![Figure 2](image-url) The recipient regions in the first and the third stages of the WRP
quality and substantial economic losses (Zhu and Cui 1996).

2. Soil and water loss. The Chinese loess plateau is the most extreme soil and water loss area in the world. The area of loss is about 60% of the total land area, and the annual average soil loss is 2000–2500 t km\(^{-2}\) (Shi and Shao 2000). The majority of recipient regions for the water are located in the loess plateau. Soil and water loss has seriously destroyed land resources and degraded the eco-environment.

3. Grassland degradation. In areas of northern China, such as Shaanxi, degrading grassland represents about 95% of the total grassland area (Zhang 2001). The situation of grassland degradation is likely to become more serious, with problems of secondary salinization (Zhang and Li 2002), environmental pollution (Zhang and Li 2002) and decreased runoff (Tong et al. 2002).

4. Other eco-environmental problems experienced in Yellow River include drying up of the Yellow River (Song 1995; Cai and Yang 2002), waterway stagnation (Yin 2001), carbon loss (Li 2003), decreasing vegetation cover (Fiao and Fang 2001) and eco-environmental calamities (Wu et al. 2000).

These eco-environmental problems result from both natural (harsh natural conditions) and man-made causes (population overload, over-grazing and reclamation of waste land and deforestation). To resolve these problems, it is necessary to restore the vegetation. Water is the pivotal factor for vegetation restoration in northwest China (Zhang and Li 2002). However, the degree of water deficit is serious (Zhang and Xie 1999; He et al. 2000; Qi 2001; Zhang et al. 2001), hence, the WRP provides a means of resolving these problems.

METHODOLOGY

The EEB of different ecosystems were assessed according to their service functions and with two different methods, market value and shadow engineering methods (Huan 2001). The main service functions of forest and grassland ecosystems include the ability to: (1) conserve water, (2) preserve the soil, (3) fix sand, (4) mitigate wind, (5) fix CO\(_2\) and release O\(_2\), (6) purify the atmosphere, (7) decrease the loss of nutrient elements and organic materials (OM), and (8) remediate other ecosystem service functions (Ou Yang et al. 1999). There are many methods of assessing ecosystem service functions.

RESULTS

To assess the EEB of the WRP, it is helpful to take the WRP as a whole, and to measure the average of the transferred water’s allocation. The EEB will be assessed according to the different ecosystems, different service functions, different assessment methods and different parameters for 2020, 2030, and 2050.

Eco-environmental benefits resulting from water conservation

Forest has an important water conservation function (Deng et al. 2002). To assess the EEB resulting from water conservation, the shadow engineering method was used. The major coefficients are the volume of increased water storage capacity, which is equal to the water conservation and engineering investment required per m\(^3\) of increased storage capacity. We assume that the water requirement of the forest (WRF) in northwest China is 11880 m\(^3\) ha\(^{-1}\) year\(^{-1}\). The water capacity (WC) of mature forest in northwest China is 1299.37 m\(^3\) ha\(^{-1}\) year\(^{-1}\) (Jiang 2002; Xu et al. 2003).

The engineering investment (EI) required per m\(^3\) of storage capacity is 0.67 yuan (RMB) × m\(^{-3}\) (Ou Yang et al. 1999).

\[
\text{EEB}_1 = TWF \times WRF^{-1} \times WC \times EI
\]

(1) where EEB1 represents the EEB resulting from water conservation in the forest ecosystem. Table 2 can then be generated using equation (1). Grassland also has an important water conservation

<table>
<thead>
<tr>
<th>Year</th>
<th>Transferred water for forest (10(^6) m(^3))</th>
<th>Irrigation water of forest area (10(^7) ha)</th>
<th>Amount of water held (10(^3) m(^3))</th>
<th>Benefit (10(^6) yuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>7</td>
<td>5.89</td>
<td>7.12</td>
<td>0.48</td>
</tr>
<tr>
<td>2030</td>
<td>15</td>
<td>12.63</td>
<td>15.27</td>
<td>1.02</td>
</tr>
<tr>
<td>2050</td>
<td>23</td>
<td>19.36</td>
<td>23.41</td>
<td>1.57</td>
</tr>
</tbody>
</table>

Table 2 Eco-environmental benefits from water conservation
function. However, the EEB from water conserva-
tion for grassland has not been assessed because of
a lack of data. The assessment of EEB1 for 2020,
2030, and 2050 produces results of 0.48×10^9,
1.02×10^9 and 1.57×10^9 yuan (RMB), respectively.

Eco-environmental benefits from fixing CO₂ and releasing O₂

Forest and grassland fix CO₂ and release O₂. The methods of calculation used are the market value and shadow engineering methods (Guan et al. 2002). The major coefficients are the amount of fixed CO₂ (AFC), the amount of released O₂ (ARO), the silvicultural cost (SC) for fixing CO₂, and the cost of producing O₂ (CPO). The productivity of the forest (PF) is 1.132×10^6 kg ha⁻¹ year⁻¹ (Ou Yang et al. 1999). The transfer coefficient (TC) from biomass to carbon is 0.45 in the northwest of China (Hakkila 1989). The SC is 2.753×10^5 yuan (RMB) kg⁻¹. The cost of producing O₂ (CPO) is equal to 4×10^3 yuan (RMB) kg⁻¹ (Ou Yang et al. 1999). Grassland water requirement (GWR) is 5625 m³ (Du 1991). The yield of hay (YH) is 1465 kg ha^{-1} (Liao and Jia 1996). The ratio of stem/root of grass (RSR) is 0.24 (Fang et al. 1996).

\[\text{EBE}_2 = \text{TW} \times \text{WRF} \times \text{PF} \times \text{TC} \times \left(\frac{44}{12} \right) \times \text{SC} \]

\[\text{EBE}_3 = \text{TW} \times \text{WRF} \times \text{PF} \times \text{TC} \times \left(\frac{32}{12} \right) \times \text{CPO} \]

\[\text{EBE}_4 = \text{TW} \times \text{WRF} \times \text{PF} \times \text{TC} \times \left(\frac{32}{12} \right) \times \text{CPO} \]

\[\text{EBE}_5 = \text{TW} \times \text{WRF} \times \text{PF} \times \text{TC} \times \left(\frac{32}{12} \right) \times \text{CPO} \]

In the grassland from absorbing CO₂ and releasing O₂, respectively. The benefits resulting from fixing CO₂ for the increased forest area can be assessed at 3.01×10^5 yuan (RMB) in 2020, 6.45×10^5 yuan (RMB) in 2030 and 9.88×10^5 yuan (RMB) in 2050. The corresponding values for releasing O₂ for the increased forest area amount to 3.20×10^5, 6.86×10^5 and 10.52×10^5 yuan (RMB) in 2020, 2030 and 2050, respectively. For grassland, the corresponding benefits for fixing CO₂ are 6.07×10^5, 13.96×10^5 and 18.20×10^5 yuan (RMB) in 2020, 2030 and 2050, respectively (Table 3).

Eco-environmental benefits from retaining soil

Forest and grassland can decrease the loss of soil, organic material (OM) and nutrients in the soil, and they can decrease the stagnation of waterways, reservoirs and lakes. The methods of calculation used are the shadow engineering and market value methods (Hou et al. 1998). The amount of soil loss in wasteland (SLW) in northwest China is about 4.267×10^6 kg ha⁻¹ (Lu and Zhang 1995), and the ratio of forest soil loss to wasteland soil loss (RFW) is 5% (Wu et al. 2002). We assume the ratio of grassland soil loss to wasteland soil loss (RGW) is equal to the RFW. Loess soil is the main soil type in northwest China and its soil bulk density (SBD) is 1.190×10^6 kg m⁻³ (Gansu Soil Survey Office 1993). The cost of building a reservoir (CBR) is 0.67 yuan (RMB) m⁻³ (Ou Yang et al. 1999). The content of OM (COMM) in the surface loess soil is 0.984%. The content of N (CN) and of P (CP) are 0.068% and 0.064%, respectively (Gansu Soil Survey Office 1993). The price of OM (POM) is 1.00×10^3 yuan (RMB) kg⁻¹. The price of N (PN) is 1.304 yuan (RMB) kg⁻¹. The price of P

<table>
<thead>
<tr>
<th>Year</th>
<th>Ecosystem</th>
<th>Transferred water (10³ m³)</th>
<th>Amount of CO₂ fixed (10³ kg)</th>
<th>Benefit of CO₂ fixed (10³ yuan)</th>
<th>Amount of O₂ released (10³ kg)</th>
<th>Benefit of O₂ released (10³ yuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>forest</td>
<td>7</td>
<td>1.10</td>
<td>3.01</td>
<td>8.00</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>10</td>
<td>2.22</td>
<td>6.07</td>
<td>16.15</td>
<td>6.46</td>
</tr>
<tr>
<td>2030</td>
<td>forest</td>
<td>15</td>
<td>2.36</td>
<td>6.45</td>
<td>17.15</td>
<td>6.86</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>23</td>
<td>5.11</td>
<td>13.96</td>
<td>57.14</td>
<td>14.86</td>
</tr>
<tr>
<td>2050</td>
<td>forest</td>
<td>23</td>
<td>3.62</td>
<td>9.88</td>
<td>26.50</td>
<td>10.52</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>30</td>
<td>6.66</td>
<td>18.20</td>
<td>48.44</td>
<td>19.58</td>
</tr>
</tbody>
</table>
Ecosystem benefits from reducing loss of nutrient elements

The percentage of stagnation/soil loss is about 24% (On Yang et al. 1999). The EEB resulting from decreasing the stagnation can be calculated as follows:

$$\text{EEB10} = \text{TWG} \times \text{WRF}^{-1} \times \text{SLW} \times (1 - \text{RFW}) \times \text{CP} \times \text{PP}$$

$$\text{EEB11} = \text{TWG} \times \text{WRG}^{-1} \times \text{SLW} \times (1 - \text{RGW}) \times \text{CP} \times \text{PP}$$

EEB10 and EEB11 represent the benefits resulting from decreasing stagnation for the increased forest and grassland areas, respectively, as a result of water transfer. The benefits from decreasing stagnation for the increased forest area are 0.32 × 10^8 yuan (RMB) in 2020, 2.24 × 10^8 yuan (RMB) in 2030 and 2.92 × 10^8 yuan (RMB) in 2050 for decreasing stagnation (Table 5).

EEB resulting from decreasing the loss of OM are calculated as follows:

$$\text{EEB12} = \text{TWG} \times \text{WRF}^{-1} \times \text{SLW} \times (1 - \text{RGW}) \times \text{COM} \times \text{POM}$$

Table 4 Eco-environmental benefits from reducing loss of nutrient elements

<table>
<thead>
<tr>
<th>Year</th>
<th>Ecosystem</th>
<th>Transferred water for forest (10^3 m^3)</th>
<th>Amount of soil lost (10^3 kg)</th>
<th>Amount of N lost (10^3 kg)</th>
<th>Benefit of N loss (10^3 yuan)</th>
<th>Amount of P lost (10^3 kg)</th>
<th>Benefit of P loss (10^3 yuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>forest</td>
<td>7</td>
<td>2.39</td>
<td>1.62</td>
<td>2.12</td>
<td>1.55</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>10</td>
<td>7.21</td>
<td>4.9</td>
<td>6.39</td>
<td>4.61</td>
<td>3.69</td>
</tr>
<tr>
<td>2030</td>
<td>forest</td>
<td>15</td>
<td>5.12</td>
<td>3.48</td>
<td>4.54</td>
<td>3.28</td>
<td>2.62</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>23</td>
<td>16.57</td>
<td>11.27</td>
<td>14.7</td>
<td>10.61</td>
<td>8.49</td>
</tr>
<tr>
<td>2050</td>
<td>forest</td>
<td>23</td>
<td>7.85</td>
<td>5.34</td>
<td>6.96</td>
<td>5.02</td>
<td>4.02</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>50</td>
<td>21.62</td>
<td>14.7</td>
<td>19.17</td>
<td>13.84</td>
<td>11.07</td>
</tr>
</tbody>
</table>

Table 5 Eco-environmental benefits from decreasing water stagnation

<table>
<thead>
<tr>
<th>Year</th>
<th>Ecosystem</th>
<th>Transferred water (10^3 m^3)</th>
<th>Amount of soil held (10^3 kg)</th>
<th>Volume of stagnation decrease (10^3 m^3)</th>
<th>Benefit of stagnation decrease (10^3 yuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>forest</td>
<td>7</td>
<td>2.39</td>
<td>0.48</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>10</td>
<td>7.21</td>
<td>1.46</td>
<td>0.98</td>
</tr>
<tr>
<td>2030</td>
<td>forest</td>
<td>15</td>
<td>5.12</td>
<td>1.03</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>23</td>
<td>16.57</td>
<td>3.34</td>
<td>2.24</td>
</tr>
<tr>
<td>2050</td>
<td>forest</td>
<td>23</td>
<td>7.85</td>
<td>1.58</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>grassland</td>
<td>50</td>
<td>21.62</td>
<td>4.35</td>
<td>2.92</td>
</tr>
</tbody>
</table>
Ecosystem

Eco-environmental benefits from reducing SO2 and removing dust (CDD) is 0.3315 yuan (RMB) kg\(^{-1}\) in 2050. For grassland, the corresponding benefit is 0.3315 yuan (RMB) kg\(^{-1}\). The cost of decreasing dust (CDD) is 0.3315 yuan (RMB) kg\(^{-1}\) (Kang and Tian 2002).

Eco-environmental benefits from purifying the atmosphere

The forest ecosystem has the ability to absorb SO\(_2\) and remove dust from the atmosphere (Guan et al. 2002). The amount of SO\(_2\) absorbed (ASA) by deciduous broadleaved and coniferous mixed forest is 152 kg ha\(^{-1}\) year\(^{-1}\). The amount of dust removed (ADR) by deciduous broadleaved and coniferous mixed forest is 2.17 x 10\(^6\) kg ha\(^{-1}\) year\(^{-1}\) (Ou Yang et al. 1999). The cost of decreasing SO\(_2\) (CDS) is 10 yuan (RMB) kg\(^{-1}\). The cost of decreasing dust (CDD) is 0.3315 yuan (RMB) kg\(^{-1}\) (Kang and Tian 2002).

\[
EEB14 = TWF \times WRF^{-1} \times ASA \times CDS
\]

(14)

\[
EEB15 = TWF \times WRF^{-1} \times ADR \times CDD
\]

(15)

EEB14 and EEB15 represent the benefits resulting from absorbing SO\(_2\) and removing dust, respectively, for the increased forest area because of water transfer. The benefits from absorbing SO\(_2\) because of the increased forest area are 0.90 x 10\(^8\) yuan (RMB) in 2020, 1.92 x 10\(^8\) yuan (RMB) in 2030 and 2.94 x 10\(^8\) yuan (RMB) in 2050. The benefits from decreasing dust because of the increased forest area are 4.24 x 10\(^8\) yuan (RMB) in 2020, 9.98 x 10\(^8\) yuan (RMB) in 2030 and 13.93 x 10\(^8\) yuan (RMB) in 2050 (Table 7). The benefits resulting from absorbing SO\(_2\) and removing dust in the increased grassland area have not been assessed because of a lack of data.

Sum of eco-environmental benefits

Many other service functions have not yet been assessed, such as education, tourism, etc. Table 8 can be generated using the results from the above equations. The EEB are 15.73 x 10\(^8\) yuan (RMB) in 2020, 33.68 x 10\(^8\) yuan (RMB) in 2030 and 51.65 x 10\(^8\) yuan (RMB) in 2050 for the increased forest area as a result of water transfer. The corresponding benefits are 24.30 x 10\(^8\) yuan (RMB) in 2020, 55.88 x 10\(^8\) yuan (RMB) in 2030 and 72.87 x 10\(^8\) yuan (RMB) in 2050 for the increased grassland area as a result of water transfer.

DISCUSSION

Water, a limited and fragile resource, is different from other resources such as soil and vegetation (Savenije 2002). Water can be transferred over great distances. Opportunities to alter the distribution of water are immense (Biswas et al. 1983) and the WRP is one such opportunity. The WRP will bring about gigantic economic benefits. The direct economic benefit is about 213–809 x 10\(^8\) yuan (RMB) for the recipient regions (Han et al. 1998).

According to this study, the EEB are...
Table 8 Sum of eco-environmental benefits over time (units: 10^8 yuan)

<table>
<thead>
<tr>
<th>Year</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>15.75</td>
<td>33.68</td>
<td>51.65</td>
</tr>
<tr>
<td>Grassland</td>
<td>24.30</td>
<td>55.88</td>
<td>72.87</td>
</tr>
<tr>
<td>Total</td>
<td>40.02</td>
<td>89.57</td>
<td>124.52</td>
</tr>
</tbody>
</table>

40.02 \times 10^8\text{yuan (RMB)} in 2020, 89.57 \times 10^8\text{yuan (RMB)} in 2030 and 124.52 \times 10^8\text{yuan (RMB)} in 2050. The eco-environmental benefit value is on the low side because of the lack of assessment of some system service functions and the lack of consideration of the long-term impact of the eco-environment. Natural resources are ample in northwest China and this preponderance in natural resources will convert into economic predominance after the WRP is carried out (Liu et al. 2001). The eco-environment functions will become more important following the forthcoming economic development and improvements in the living standards.

Using transferred water in the WRP continuously and effectively to resolve the water deficit in northwest China is propitious for many reasons: for socio-economic development and improvement in the standard of living, for construction of an ecological environment in the ecotone in northwest China, and for resolving the drying up of the Yellow River and stagnation of the riverbed. However, there is more work to do, of which water saving is the most important aspect. After the WRP is completed, the Yellow River and the recipient regions of the WRP will still have insufficient water (Zhang and Xie 1999; He et al. 2000). To encourage water saving, raising the price of water is a useful tool (Liu et al. 2003). However, water is not an ordinary economic resource (Savenije 2002) and institutional reform and more comprehensive other reforms are also necessary (Summerton 1998; Chaturvedi 2001; Feldman 2001; Jin and Young 2001; Yang et al. 2003).

The benefit resulting from agricultural irrigation is about 1.5 yuan (RMB) m^{-3}, the benefit from industry and lifestyle is about 5.3 yuan (RMB) m^{-3}, and the benefit resulting from waterpower is about 0.9 yuan (RMB) m^{-3}. The direct economic benefit in the recipient regions in the WRP is about 4.73–4.15 yuan (RMB) m^{-3} (Han et al. 1998). According to this study, the benefit of the WRP resulting from the eco-environment is about 1.0 yuan m^{-3}. In fact, the ecological implications of water transfer have been and continue to be inadequately addressed (Snaddon et al. 1998) because of the externality and concealment of ecological benefits. Water management in integrated environmental management should, therefore, consider the EEB more, and the ecological water requirement should be met.

The WRP will help to alleviate water scarcity in northwest China and is necessary for improvements in the eco-environment and for economic development. Saving water and integrated water management are also very important. Detailed ecological studies of the effects of water transfer have, so far, fallen on deaf ears in administrative, engineering and political circles (Snaddon et al. 1998). More attention should be paid to the ecological aspects of the WRP and more studies should now be done.

ACKNOWLEDGEMENTS

The authors thank Leif Söderlund, an economist at the MTT Agrifood Research, Finland for assistance. This article is supported by the Knowledge Innovation Program (KIP) of the Chinese Academy of Sciences (KZCX 3-SW-423) and the SUSDEV-CHINA project in the EU INCO-DEV programme (ICA1-CT-2002-10004). It is partly funded by the Development Plan of the State Key Fundamental Research (2002CB11565).

REFERENCES

Cai X and Yang Z. Genesis and countermeasures on the cutoff of the Yellow River. Journal of Chengdu University of Technology 2002;29(2):199–205
Hakkila P. Utilisation of residual forest biomass. Berlin: Springer-Verlag; 1989
Huan M. Summarizing the ecosystem service functions and their values. Ecological Economy 2001;12:41–3
Jia S. The economic feasibility proof of the South-to-North Water Transfer Project must be thoroughly carried out. Science and Technology Review 2001;7:17–20
Li Q. Cao T and Hu J. The indispensability and feasibility analysis of the South-North Water Transfer Scheme. Water resources and water engineering 2000;11(2):29–32, 39
Liu G, Cui Q and Zhang S. West Route Project of South-North Water Transfer: the strategic project of Western Development. Yellow River 2001;25(8):18–19
Lu Z and Zhang X. Study on soil water’s dynamic and benefits of conserving the soil and water of artificial grassland in Loess Plateau Resource and Environment in Arid Region 1995;9(1):49–9
Piao S and Fang J. Dynamic vegetation cover change over the last 18 years in China. Quaternary Sciences 2001;21(4):294–302
Savenije HHG. Why water is not an ordinary economic good, or why the girl is special. *Physics and Chemistry of the Earth* 2002;27:741–4
Shang Y, Ding Z and Tong H. Influence analysis of West Route Project in South-North Water Transfer on ecological environment. *Yellow River* 2001; 23(10):21–2
Snaddon CD, Wishart MJ and Davies BR. Some implications of inter-basin water transfers for river ecosystem functioning and water resources management in southern Africa. *Aquatic Ecosystem Health and Management* 1998;1:159–82
Varis O and Vakkilainen P. China’s 8 challenges to water resources management in the first quarter of the 21st Century. *Geomorphology* 2001;41:93–104
Wu Q, Zhao H and Liu X. Matching techniques for sustaining and improving the soil and water conserving function of loess plateau vegetation – (i) conditions for conserving soil and water in forest. *Rural Eco-Environment* 2002;19(2):50–2
Yin G. Characteristics of sediment outflow and analysis of he runoff needed by sediment outflow in the lower Yellow River. *Journal of Sediment Research* 2001;3:50–6
Zhang H and Xie B. Analysis of the degree of water deficit in the water-in regions of West Route Project in South-North Water Transfer and in the water supply region of Yellow River. *Yellow River* 1999;21(2):29–31, 37
Zhang X, He H, Chen H and Xiao S. Objectives and areas of West Route Project in South-North Water Transfer. *Yellow River* 2001;23(10):15–16