Molecular dynamics simulations of structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces

Guangzhi He *, Meiyi Zhang, Qin Zhou, Gang Pan *

Department of Environmental Nano-materials, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

HIGHLIGHTS
- Structures of PFOS assembled at the water–rutile interface were investigated.
- Concentration and salinity conditions significantly affect PFOS-solid interaction.
- Ca\(^{2+}\) enhanced the critical concentration for occurrence of multilayer adsorption.
- An atomic picture for the counterion-bridging in PFOS adsorption was provided.

GRAPHICAL ABSTRACT

Low \(C_{\text{PFOS}}\)
High \(C_{\text{PFOS}}\)
Adding \(\text{Ca}^{2+}\)

ABSTRACT
Concentration and salinity conditions are the dominant environmental factors affecting the behavior of perfluorinated compounds (PFCs) on the surfaces of a variety of solid matrices (suspended particles, sediments, and natural minerals). However, the mechanism has not yet been examined at molecular scales. Here, the structural transformation of perfluorooctane sulfonate (PFOS) at water/rutile interfaces induced by changes of the concentration level of PFOS and salt condition was investigated using molecular dynamics (MD) simulations. At low and intermediate concentrations all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, yielding a typical monolayer structure. As the concentration of PFOS increased, the molecules aggregated in a complex multi-layered structure, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains. When adding \(\text{CaCl}_2\) to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of \(\text{CaCl}_2\) enhanced the critical concentration value to yield PFOS multilayer assemblies. The divalent \(\text{Ca}^{2+}\) substituted for monovalent \(\text{K}^+\) as the bridging counterion in PFOS adsorption. MD simulation may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale.

1. Introduction

Perfluorinated compounds (PFCs) occur globally in water and soil environments (Lau et al., 2007; Route et al., 2014). Perfluorooctane sulfonate (PFOS, \(\text{C}_8\text{F}_{17}\text{SO}_3^-\)) is the most commonly measured PFCs, and has been included in the list of Stockholm Convention on
Persistent Organic Pollutants (POPs) in 2009 as a global contaminant (Wang et al., 2009). Different from other POPs, PFOS has high water solubility. The high persistence and long-range transport of PFOS in environments have prompted increasing concerns regarding its interfacial behavior that is regarded as central to the environmental fate of PFOS and the treatment of high-concentration wastewater (Pan and You, 2010; Xiao et al., 2011; Zhou et al., 2013).

So far, although PFOS has been investigated extensively, little is known about its interfacial microstructure and the interaction that hold PFOS to the surface because it is inaccessible from the existing experimental measurement (Du et al., 2014). However, the microscopic information is essential to enhance our understanding of the environmental fate of PFOS and to develop high performance adsorbents, because the change of assembling structure and interaction may produce a significant impact on its reversibility, lability, and transport in the environment and the efficiency of water treatment. Although the critical micelle concentration (CMC) of PFOS is 4573 mg L\(^{-1}\), it is possible to form hemi-micelles on adsorbent surfaces when its concentration reaches the value of 0.01–0.001 of the CMC (Johnson et al., 2007) (a concentration level of PFOS in experiments and water treatment systems). Therefore, increase of PFOS concentrations promotes the nucleation of hemi-micelles and micelles (Yu et al., 2009; Wang and Shih, 2011), which may result in a substantial increase of PFOS at the interface, and a significant change in the macroscopic sorption properties (e.g., the occurrence of multilayer adsorption (Zhao et al., 2011)). Different types of hemi-micelles and multi-layered structures have been proposed based on macroscopic experiments (Chen et al., 2011; Zhang et al., 2011b; Du et al., 2014). However, these structures need to be identified at molecular scales.

PFOS is an anionic surfactant, and hence the ionic strength and cation type in solutions are critical in the adsorption of PFOS on solid surfaces (Jeon et al., 2010; You et al., 2010; Wang and Shih, 2011). Different types of cations may yield very different effects on both interaction strength and structure. However, most sorption experiments provide only macroscopic information (e.g., sorption capacity and sorption kinetics) about the interfacial behavior of PFOS, but little insight into the interaction and microstructure. In fact, changes in the sorption isotherms driven by concentration and salinity conditions depend on the interactions between hydrophobic tails, repulsions between headgroups and interatomic interactions between surfactant molecules with the solid surface (Yu et al., 2009; Wang and Shih, 2011). These mechanisms are required to be verified by using atomic–molecular level technologies.

Molecular dynamics (MD) simulation, which solves the movement of atoms and molecules, provides detailed insights pertaining to structure, energetics, and dynamics of complex multiphase systems. MD simulation has been successfully used to investigate the interfacial behavior of alkyl surfactants, such as sodium dodecyl sulfate (SDS) and \(n\)-alkyl polyethylene oxide (Srinivas et al., 2006; Tummala and Striolo, 2008; Dominguez, 2011; Lin et al., 2011; Nunez-Rojas and Dominguez, 2011). Compared with alkyl surfactants, the perfluoroalkyl surfactant may present different assembling features due to the super hydrophobicity and counterion-bridging effects. To our knowledge, how the environmental factors such as concentration and salinity affect the structure and behavior of perfluorinated compounds (PFCs) at solid-water interfaces has not yet been investigated at molecular scales.

TiO\(_2\) is one of the most common and technologically important metal oxides for modern science and technology, and shows a relatively high affinity to PFOS (Yuan et al., 2001). Rutile TiO\(_2\) was chosen as the model oxide surface in this MD study. This study is expected to provide an effective way to investigate the microstructures and interaction properties of PFOS at water-metal oxide (e.g., Fe-, Al-, Mn-, and Ti-oxides) interfaces, and may trigger wide applications of MD simulation in describing the structure and environmental behavior of PFCs as MD technique is improving.

Here, the structural transformation and interaction properties of PFOS assembled at the water–rutile interface as a function of concentration and salinity conditions were studied using molecular dynamics (MD) simulation. The surface aggregation was characterized in terms of structure, shape, and associated mode. Effects of salinity on the surface assembling properties of PFOS were investigated by adding CaCl\(_2\) to the simulated system. The conformational feature of PFOS was described using the atomic density profile and angle distribution analysis. The role of counterions (K\(^+\), Ca\(^{2+}\)) in the formation of surface aggregates was characterized with the radial distribution functions between atoms.

2. Methods

All simulations were carried out using the COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) force field as implemented in the Discover module in Materials Studio package (Accelrys Software Inc.). The functional form of COMPASS force field is given as follows (Sun, 1998; Zhang et al., 2011a):

\[
E_{\text{pot}} = \sum \left[K_2 (b - b_0)^2 + K_3 (b - b_0)^3 + K_4 (b - b_0)^4 \right]
+ \sum \left[H_2 (\theta - \theta_0)^2 + H_3 (\theta - \theta_0)^3 + H_4 (\theta - \theta_0)^4 \right]
+ \sum \left[V_1 (1 - \cos(\phi - \phi^0_1)) + V_2 (1 - \cos(2\phi - \phi^0_2)) + V_3 (1 - \cos(3\phi - \phi^0_3)) \right]
+ \sum K_1 (\chi - \chi_0)^2
+ \sum \sum F_{\text{hb}} (b - b_0)(b' - b'_0)
+ \sum \sum \sum \sum F_{\text{ww}} (\theta - \theta_0)(\theta' - \theta'_0)
\]

Table 1

<table>
<thead>
<tr>
<th>Atom</th>
<th>Charges/e</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (in SO(_3))</td>
<td>1.474</td>
</tr>
<tr>
<td>O (in SO(_3))</td>
<td>0.706</td>
</tr>
<tr>
<td>C (in SF(_2))</td>
<td>0.166</td>
</tr>
<tr>
<td>C (in CF(_2))</td>
<td>0.520</td>
</tr>
<tr>
<td>C (in CF(_3))</td>
<td>0.780</td>
</tr>
<tr>
<td>F</td>
<td>0.920</td>
</tr>
<tr>
<td>K</td>
<td>1.000</td>
</tr>
<tr>
<td>Ti</td>
<td>1.600</td>
</tr>
<tr>
<td>O (in TiO(_2))</td>
<td>0.800</td>
</tr>
<tr>
<td>O (in H(_2)O)</td>
<td>0.820</td>
</tr>
<tr>
<td>H</td>
<td>0.410</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Distance</th>
<th>Value (Å)</th>
<th>Angle (°)</th>
<th>Value (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S–O</td>
<td>1.48</td>
<td>S–C–C</td>
<td>116</td>
</tr>
<tr>
<td>S–C</td>
<td>1.91</td>
<td>C–C–C</td>
<td>114</td>
</tr>
<tr>
<td>C–C</td>
<td>1.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C–F</td>
<td>1.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The structural parameters are from the DFT-calculated data in the literature (Torres et al., 2009).
The total potential energy (E_{pot}) contains the bond stretching (a), angle bending (b), torsion (c), out-of-plane coordinate (d), cross-coupling (e)–(k), Coulombic interaction (l), and van der Waals interaction (m) terms. K, H, F, and V are force-field parameters. The b, θ, ϕ, and χ represent bond length, bending angle, torsion angle, and out-of-plane angle, respectively. The parameters b_0, θ_0, ϕ_0, and χ_0 are the ideal values at zero energy. COMPASS has proven to be suitable for simulating titanium oxides (Kornherr et al., 2004, 2006; Zhang et al., 2011a), surfactants (Ryjkina et al., 2002), and perfluorinated compounds (Prathab et al., 2006; Li et al., 2013). The agreement between our calculated PFOS structure and the DFT-calculated results (see Supplementary Data) indicated that the COMPASS force field is reliable for the description of PFOS. Partial atomic charges used in COMPASS are presented in Table 1.

The (110) crystal plane was used as the surface because it is the predominantly exposed plane of natural rutile (60%) (Perron et al., 2007). The dimensions of the solid model were 4.1 \times 3.9 \times 1.3 nm, which contained 766 TiO$_2$ molecules. The initial configuration of the interfacial system was prepared from a monolayer of PFOS molecules (a sulfonate headgroup attached to eight perfluorinated carbon atoms with a length of \sim1.0 nm) with the sulfonate headgroups pointed to the surface (\sim8 Å above the substrate). The initial structure of PFOS is shown in Table 2. K$^+$ ions were added close to the headgroups to neutralize the charge of anionic PFOS (i.e., the potassium salt of PFOS). To reach a water density of \sim1.0 g/cc within the solution layer of 4 \times 4 \times 4 nm, 2000 water molecules were used to simulate the solvent environment. The water was simulated using the simple point charge (SPC) model (Berendsen et al., 1987), which worked reliably with the COMPASS force field.

![Fig. 1. Snapshot of the final structure of the PFOS aggregates on the rutile (110) surface under three different concentration conditions [(a) low; (b) intermediate; (c) high]. Yellow balls with three surrounding red balls denote the sulfonate headgroups, and the blue–gray sticks denote the C–F chains. The small purple circles represent K$^+$ ions, and the red–gray lines represent water molecules. For TiO$_2$, gray and red balls represent Ti and O atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image1)

![Fig. 2. Conformational feature of PFOS molecules on the rutile (110) surface at three different concentrations: (a) density profiles of the O atoms of the sulfonate headgroups along the Z direction; and (b) angle distribution of PFOS with respect to the surface normal.](image2)
The atoms in rutile were constrained to their equilibrium bulk positions, while the structures of PFOS and water molecules were optimized during the simulations (Li and Choi, 2007; Prathab et al., 2007; Nunez-Rojas and Dominguez, 2011). Periodic boundary conditions were imposed, and these systems were separated from their periodic images by a vacuum gap of 6 nm to eliminate spurious interactions between the periodic replicas in the Z direction (Dominguez, 2009; Monti et al., 2012). The resulted final box was approximately $4 \times 4 \times 12$ nm3.

The simulation was performed under three different PFOS concentrations (25, 36, and 64 PFOS molecules) to investigate how the concentration levels affected the interfacial assembling behavior of PFOS. In order to explore the salinity effects, a certain number of Ca$^{2+}$ and Cl$^{-}$ were added to the systems to achieve a ratio of PFOS to CaCl$_2$ being 1:1. The systems were first energetically minimized for 5000 steps using the smart minimizer method, which switches from steepest-descent to conjugated gradient method as the energy derivatives decrease to accelerate the computation. After the initialization, all the MD simulations were conducted in the canonical ensemble (NVT) at a constant temperature of 298 K maintained using Andersen thermostat (Andersen, 1980). The equations of motion were integrated with the velocity Verlet algorithm with a time step of 1 fs (Verlet, 1967). The electrostatic interactions were treated using the Ewald method (Plimpton, 1995), and the Van der Waals interactions were handled with atom-based summation method using a cutoff distance of 9.5 Å with long-range corrections added. The simulations were confirmed to have reached equilibrium within 15 ns by monitoring the structure and shape of PFOS aggregates as a function of time. Therefore, all the systems were finally equilibrated for 18 ns.

The selection of parameters and models was justified by performing test calculations (see Supplementary Data). Increasing the orbital cutoff from 9.5 to 12.0 Å had no obvious effect on the interfacial structure and properties of PFOS. Similarly, no obvious change was found in the equilibrium structure when we started the simulation with a different initial configuration (i.e., the PFOS molecules parallel to the surface), indicating that the MD results do not depend on the initial conditions. These tests verified that the present computational settings and models were reliable for describing the structure and properties of PFOS at water–rutile interface.

3. Results and discussions

3.1. Concentration effects

The equilibrium structures of PFOS assembled at the water–rutile interface under three different (low, intermediate, and high) concentration conditions are present in Fig. 1. A structural transformation driven by an increment of PFOS concentration was clearly identified. At the low and intermediate concentrations, all PFOS molecules directly interacted with the rutile (110) surface mainly by the sulfonate headgroups through electrostatic attraction, and
well arrayed in a monolayer (Fig. 1a and b). It was observed that the sulfonate headgroups close to the solid surfaces were linked together by the K^+ ions, leaving the perfluoroalkyl tails away from the surface. As the concentration increased, PFOS molecules arrayed in a different pattern, where a number of PFOS molecules were adsorbed on the monolayer structure by the van der Waals interactions between the perfluoroalkyl chains, forming a multilayer aggregate (Fig. 1c).

The PFOS-surface interaction was depicted from the density profiles of the O atoms of the sulfonate headgroups in the Z-direction (i.e. normal to the solid surfaces, Fig. 2a). The orientation of PFOS molecules at the water–rutile interface was determined by the angle (θ) between the C1–C8 vector (C1 is the C atom attached to the sulfonate headgroup, and C8 is the C atom at the end of the perfluoroalkyl chain) and the surface normal (Fig. 2b). The density profiles showed that the sulfonate headgroups interacted with the rutile surfaces mainly at the distance of 2.0–3.5 Å (see the main peaks in Fig. 2a). At low and intermediate concentrations, more than 85% of PFOS molecules were located on the surface with the angle θ less than 45° (Fig. 2b), indicating that most of the PFOS preferred to align perpendicular to the substrate. This conformation is favorable for the electrostatic interaction between the sulfonate headgroups and the solid surface. At high concentration the second adsorbed layer was observed, corresponded to the peaks of the sulfonate headgroups at 17.5–25.0 Å in Fig. 2a. In the second layer, the PFOS molecules were inclined to the surface with an angle range from 0° to 90° (Fig. 2b) and hence formed an irregular assembling configuration (Fig. 1c).

3.2. Salinity effects

When Ca^{2+} ions were added to the system, PFOS displayed a different assembling behavior in terms of the morphology and layer formation (Figs. 3 and 4a). The angles θ became smaller as the PFOS concentration increased (Fig. 4b), indicating that the PFOS monolayer underwent an ordering transformation. When Ca^{2+} was present, PFOS molecules were inclined to the surface with an angle range from 0° to 80° and formed a relatively irregular monolayer structure at the low concentration, whereas arrayed in a well-ordered monolayer pattern with the perfluoroalkyl chains nearly perpendicular to the substrate (all the angles θ less than 30°) under the high concentration condition. At high PFOS concentration, the multi-layered structure (Fig. 1c) changed to a monolayer again when adding CaCl_2 (Fig. 3c), indicating that the addition of CaCl_2 enhanced the critical concentration value for the occurrence of PFOS multilayer adsorption.

3.3. Counterion-bridging effects

To identify the role of the counterions (K^+ and Ca^{2+}) in the interfacial processes of PFOS, the K–O(3) and Ca–O(3) [O(3), the O atoms on the $–\text{SO}_3^-$ headgroups] radial distribution functions (RDFs) were analyzed (Fig. 5a and c). An enlarged snapshot of PFOS interacted with K^+ and Ca^{2+} are present in Fig. 5b and d, which provided an atomic picture for counterion-bridging mechanism in PFOS adsorption. As shown in Fig. 5b, the K^+ associated with the sulfonate headgroups of PFOS molecules at the surfaces,
reducing the lateral repulsive force between the anionic sulfonate groups and instead inducing an effective attraction. When CaCl$_2$ was added to the system, the divalent Ca$^{2+}$ substituted for monovalent K$^+$ as the bridging counterion (Fig. 5d). The RDFS were dominated by two peaks at ~2.3 and ~4.3 Å for PFOS-K$^+$ interaction while at ~2.0 and ~4.1 Å for PFOS-Ca$^{2+}$ interaction (Fig. 5a and c), which corresponded to the distances between the K$^+$/Ca$^{2+}$ and the neighbor and non-neighbor O atoms of two adjacent sulfonate groups (Fig. 5b and d). These results of RDFS indicated that the salinity conditions imposed a difference towards the surface aggregation of PFOS, and the highly charged Ca$^{2+}$ led to stronger interaction with the sulfonate groups.

4. Conclusions

The molecular dynamics (MD) results indicated that concentration and salinity conditions significantly affected the assembling behavior of PFOS at the solid–water interface. At low and intermediate concentrations, PFOS molecules directly interacted with the rutile surface mainly by the sulfonate headgroups through electrostatic attraction, and aggregated in a regular monolayer structure. As the concentration increased, PFOS molecules arrayed in a different pattern, where an irregular assembling configuration was adsorbed on the monolayer structure by the van der Waals interaction, where an irregular assembling configuration was formed. When adding CaCl$_2$ to the system, the multi-layered structure changed to a monolayer again, indicating that the addition of CaCl$_2$ enhanced the critical concentration value for the occurrence of PFOS multilayer adsorption. An atomic picture for the counterion-bridging in PFOS adsorption was provided, where the highly charged Ca$^{2+}$ substituted for K$^+$ as the bridging ion to link the sulfonate groups and thus caused the occurrence of surface aggregation. MD simulation provides new perspective for the sorptive characteristics of PFOS, and may trigger wide applications in study of perfluorinated compounds (PFCs) from atomic/molecular scale.

Acknowledgments

The study was supported by NNSF of China (21207151, 21377003, and 41103076). We thank the Supercomputing Center of the Chinese Academy of Sciences for providing access to the Materials Studio software.

Appendix A. Supplementary material

The validation of computational settings and models. Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.chemosphere.2015.04.056.

References

Zhang, H., Xu, X., Leng, Y., Watari, F., Weng, J., Feng, B., Qu, S., 2011a. Effects of aqueous environment and surface defects on Ag-Gly-Asp peptide adsorption...

