Enhanced elementary sulfur recovery with sequential sulfate-reducing, denitrifying sulfide-oxidizing processes in a cylindrical-type anaerobic baffled reactor

Cong Huang a,1, Youkang Zhao a,1, Zhiling Li a, Ye Yuan a, Chuan Chen a, Wenbo Tan a, Shuang Gao a, Lingfang Gao b, Jizhong Zhou c,d, Aijie Wang a,b,⇑

a State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
b Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
c Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
d Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA

HIGHLIGHTS
- Simultaneous removals of SO_4^{2-}, NO_3^- and COD and recovery of elemental sulfur in ABR.
- Sulfate reduction and denitrifying sulfide removal were preceded sequentially.
- A high elemental sulfur recovery rate was obtained with $\text{SO}_4^{2-}/\text{S}/\text{NO}_3^-/\text{N}$ ratio of 5:5.
- Bacterial community analysis was conducted associated with SR and DSR processes.
- DsrB gene and aprA gene were abundant in SR and DSR units, respectively.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 5 March 2015
Received in revised form 26 April 2015
Accepted 27 April 2015
Available online 12 May 2015

Keywords:
Cylindrical-type ABR
Sulfate reduction
Nitrate reduction
Elemental sulfur recovery
Microbial communities analysis

ABSTRACT

Simultaneous removal of COD, SO_4^{2-} and NO_3^- and recovery of elemental sulfur (S_0) were evaluated in a four-compartment anaerobic baffled reactor (ABR) with separated functional units of sulfate reduction (SR) and denitrifying sulhide removal (DSR). Optimal $\text{SO}_4^{2-}/\text{S}/\text{NO}_3^-$ ratio was evaluated as 5:5, with a substantial improvement of S_0 recovery maintained at 79.1%, one of the highest level ever reported; meanwhile, removal rates of COD, SO_4^{2-} and NO_3^- were approached at 71.9%, 92.9% and 98.6%, respectively. Nitrate served as a key factor to control the shift of SR and DSR related populations, with the possible involvement of Thauera sp. during SR and Sulfurovum sp. or Acidiferrobacter sp. during DSR, respectively. DsrB and aprA genes were the most abundant during SR and DSR processes, respectively. Cylindrical-type ABR with the improved elemental sulfur recovery was recommended to deal with sulfate and nitrate-laden wastewater under the optimized $\text{SO}_4^{2-}/\text{NO}_3^-$ ratio.

© 2015 Published by Elsevier Ltd.
1. Introduction

Sulfate and nitrate-laden wastewater generated from lot of industrial processes, such as pulp production, pharmacy, and petrochemical industry, constituted the serious threats to human health and eco-systematic safety (Lens et al., 2003; Banu et al., 2008). Effective removal of sulfate and nitrate by application of microorganisms played crucial roles during wastewater treatment processes (Hao et al., 2014; Lu et al., 2014). Meanwhile, elemental sulfur, phosphorus and other nutrient recovery from wastewater are the hot research field during resource recovery processes (Raj et al., 2013; Yuan et al., 2014).

Conventional biological approach to completely remove the toxicity of sulfate-laden wastes consisted of two processes, sulfate reduction to sulfide by sulfate-reducing bacteria (SRB) and sulfide further oxidation to sulfur (S0) by sulfide oxidation bacteria (SOB) (Wang et al., 2005). Recent studies found SOB could utilize nitrate as an electron acceptor during sulfide oxidation (denitrifying sulfide removal process, DSR) (Chen et al., 2008); studies on the simultaneous removal of organic carbon, sulfite and nitrate were conducted in either stirred tank reactors (CSTR) or expanded granular sludge bed (EGSB) reactor, which achieved a rather high recovery rate of S0 (>90%) (Chen et al., 2009).

However, since SRB and SOB involved in diverse environmental niches, the integration of SRB and SOB reactors faced difficulty of the low S0 conversion rate (Xu et al., 2012; Yuan et al., 2014). Xu et al. (2013) reported the intense bacterial competition during DSR process, which probably inhibited SOB and resulted in a low S0 recovery rate. Therefore, proceeding of removal of organic carbon, sulfite and nitrate and simultaneous recovery of S0 in integrated systems remained a technical challenge. Xu et al. (2012) attempted to introduce the limited quantity of DO into EGSB reactor, and found the limited quantity of DO stimulated activities of SOB but did not inhibit those of SRB, which achieved a rather high S0 recovery rate of 71.8%. However, the precise control of DO level within this very narrow window (DO range of 0.10–0.12 mg L-1) remains a technical difficulty requiring additional energy and cost.

Therefore, to obtain the high S0 recovery rate from sulfate, separation of the sulfate reduction (SR) from DSR process is the key process to avoid the bacterial competition and guarantee the SOB activity. The anaerobic baffled reactor (ABR) with the separated reaction units connected in series possesses superiority in segregation of functional bacteria, compared with other anaerobic reactors (Ujanik et al., 2002; Zhu et al., 2008). Previously, some studies had reported the removal of sulfate and nitrate contained wastewater in ABR systems (Barber and Stuckey, 2000; Plumbl et al., 2001), but up to now, there is no information on removals of organic carbon, nitrate and SO\textsubscript{4}2− for the S0 recovery in ABR system.

The objective of this study was to demonstrate the feasibility of S0 recovery during the sequential removal of organic matter, sulfate and nitrate in an ABR system with a separated functional unit of SR and DSR. The optimized SO\textsubscript{4}2−/S/NO\textsubscript{3}−N ratio was regulated to guarantee the high S0 recovery rate. The molecular analysis on microbial community and functional genes was conducted to further investigate the interplays of functional populations and reaction mechanism. To the authors' best knowledge, this is the first study to describe the biocconversion of sulfate to S0 coupled with the removal of organic matter and nitrate in ABR system.

2. Methods

2.1. Bioreactor configuration and operation conditions

Schematic of the applied ABR configuration were shown in Fig. 1. ABR system was cylindrical form (radius of 10 cm) and made of plexiglass, with four equal-volume discrete compartments and a total volume of 9.6 L. The four compartments were divided into two functional units, SR unit (compartment #1 and #2) and DSR unit (compartment #3 and #4). The flow started from influent of compartment #1 and sequentially passed through compartment #2 and #3 to #4 ultimately. In each compartment, regions of downcomer and upcomer were separated by a vertical baffle, with an angle of 45° at the bottom part to confirm the sufficient contact of wastewater and sludge. The volume ratio of upcomer and downcomer was 5:1. Peristaltic pumps were used to control the influent and effluent ratio, with a reflux ratio of 5:1. ABR was operated with a fixed HRT of 24 h. Compared with other ABR systems, the cylindrical-type ABR can largely reduce the high load in the first compartment and maintain the fine microbial activity. The above designed ABR has been authorized as a Chinese patent (201310484595.8).

The applied seed sludge was collected from the anaerobic sludge thickener at the WenChang Wastewater Treatment Plant, Harbin, China. The influent concentration (COD/SO\textsubscript{4}2−/S/NO\textsubscript{3}−N) at three stages was shown in Table 1. The influent (L-1) in compartment #1 contained: SO\textsubscript{4}2− (500 mg), sodium lactate (with the COD of 1000 mg), Ca2+ (25 mg), Mg2+ (10 mg) and trace element. Bicarbonate (1–2 g L-1) was employed to maintain the influent pH of 8.0 ± 0.3. The trace element solution was fed into the influent with the detailed composition described by Chen et al. (2009). Nitrate was applied to compartment #3, with the concentration of 132.2 mg L-1, 326.1 mg L-1 and 504.4 mg L-1, at stage I, II and III, respectively. The resulted S/N ratios at three stages were 5:2, 5:5 and 5:8, respectively (Table 1).

2.2. Analytical methods

Influent and effluent samples (3–10 mL) were collected from inlet and outlet of the reactor and stored in −4 °C refrigerator before went for chemical analysis. Samples (3–10 mL) from the middle of the four compartments at steady running state were harvested with a sterilized sample spoon and stored in a 50 mL sterile plastic test tubes at −80 °C before DNA and RNA extraction.

COD was measured according to US standard methods of water and wastewater measurement (APHA, 1998). Sulfide concentration (including H\textsubscript{2}S, HS− and S2−) was determined according to the methylene blue method (Trüper and Schlegel, 1964). Concentrations of SO\textsubscript{4}2−, S\textsubscript{2}O\textsubscript{3}2−, SO\textsubscript{3}2−, NO\textsubscript{3}− and NO\textsubscript{2}− were measured by an ion chromatography (ICS-90A, Dionex, USA) after filtrated with 0.45 μm of the millipore filter. A pH/ORP meter (No. FE20, Merlier Toledo, China) was used to determine the pH and oxidation–reduction potential (ORP) of liquid samples. Production of...
elemental sulfur was calculated according to the following equation (De Graaff et al., 2012): \[S^0 = [\text{Influent SO}_4^-] - [\text{Effluent SO}_4^-] - [\text{Effluent S}_{2}O_3^-] - [\text{Effluent HS}^-]. \]

2.3. Molecular characterization of bacterial populations and function genes

DNA was extracted using the PowerSoil DNA Isolation kit (MoBio Laboratories Inc, USA) according to the manufacturer’s instructions. Concentration and purity of extracted DNA were calculated by Nanophotometer (P-class, Implen, Germany). Bacterial V1–V3 region of 16S rRNA gene was amplified using the forward primer 8F (5’-AGAGTTTGATCCTGGCTCAG-3’) and reverse primer 533R (5’-TTACCCGCTGTCCTACG-3’). The PCR products were purified using GeneJET™ PCR purification kit (Fermentas, USA) and then went for pyrosequencing on the 454 Genome Sequencer FLX platform. The sequences obtained from 454 pyrosequencing were analyzed by pipelines of Quantitative Insights Into Microbial Ecology (QIME) software (www.microbio.me/qiime) (Caporaso et al., 2010; Loudon et al., 2014). Taxonomic classification of each phylotype was determined using SILVA rRNA database project with 97% sequence similarity rate, as suggested by Wang et al. (2007). Species richness for each community was determined by the number of unique operational taxonomic units (OTUs) and potential species was estimated by Shannon’s diversity and evenness indices. Venn diagram was generated to represent the unique OTUs of overlapping species. The diversity indices of Shannon–Wiener, Venn diagram were performed using the software R (I386 v3.0.3; http://www.r-project.org/). The Shannon index was calculated to estimate community diversity. The Shannon’s diversity index is \[H' = -\sum_{i=1}^{s} p_i \log_2(p_i), \] where \(p_i \) is the proportion of individuals belonging to the \(i \)th species in the data set of interest. It could be deduced from the formula that tags at low frequencies either from undetermined rare species or from experimental errors contribute little to the Shannon index, because the \(p_i \) value for rare tags is normally less than \(10^{-6} \) for high-throughput sequencing results. The 16S rRNA gene sequences were deposited in the NCBI Sequence Read Archive under the accession number of SRP052221.

Quantitative real-time PCR (qPCR) was performed on an ABI 7500TM Real-Time PCR System (Applied Biosystems). The qPCR mixture (25 \(\mu \)L) consisted of 1 x SYBR Green qPCR Mix (Tiangen, China), primer sets (200 nM each) and about 3 ng of template DNA. The degenerate primers of dsrB (sulfate reduction related functional genes) and aprA (sulfite oxidation related functional genes) were applied with concentration and PCR conditions described in detail by Varon-Lopez et al. (2014). Calibration curves (log DNA concentration versus an arbitrarily set cycle threshold value) for dsrB genes and aprA genes were constructed using serial dilutions of amplicon of single colonies, obtained from setting up the 16S rRNA clone library with bacterial consensus primers (27F and 1492r) from DNA samples. Gene copy number of the amplicon was calculated by multiplying the molar concentration of the amplicon by Avogadro’s constant. Efficiency values determined in this study were 0.97 and 0.95 for the dsrB and aprA genes, respectively, with an \(R^2 \) value of 0.99 for both genes. The qPCR detection limits for dsrB genes and aprA genes were 1.5 x 10^6 copies mL\(^{-1}\) and 3.6 x 10^5 copies mL\(^{-1}\), respectively. The \(R^2 \) of the standard curves obtained by real-time PCR were up to 0.991 and the reaction efficiency was up to 90%. All experiments were performed in triplicates.

3. Results and discussion

3.1. ABR performance at the different SO\(_4^2^-\)/S:NO\(_3^-\)-N ratios

The removal of COD, NO\(_3^-\), SO\(_4^2^-\) and the generation of S\(^0\) during stage I, II and III were shown in Fig. 2 and Table 2. At stage I with SO\(_4^2^-\)/S:NO\(_3^-\)-N ratio of 5:2, the COD removal rate was fluctuated between 50% and 60% at the first 10 days, indicating an acclimation process. After 10 days, the removal rates of COD and SO\(_4^2^-\) were gradually increased to around 64.0% and 82.8%, respectively (Fig. 2A and Table 1). The removal of SO\(_4^2^-\) was corresponded to SR process, confirmed by the detection of certain amount of sulfide generation as the metabolites. The determined effluent pH was about 8.5, so the main form of sulfide was estimated as S\(^2^-\). Meanwhile, NO\(_3^-\) removal was unstable at the first 15 days, and while NO\(_3^-\) removal was maintained at around 96.8% after that (Fig. 2B). Correspondingly, the S\(^0\) generation rate approached to 60.9% (Fig. 2C; Table 2).

When SO\(_4^2^-\)/S:NO\(_3^-\)-N ratio approached at 5:5 (stage II), a sustaining increase of removal rates of both COD and SO\(_4^2^-\) was observed, probably caused by the acclimation of SBR after a long term maintenance (Fig. 2A and C). At steady state of stage II, the removal rates of COD and SO\(_4^2^-\) were kept at 71.5% and 92.9%, respectively (Table 2). Interestingly, NO\(_3^-\) removal rate was kept at a rather high lever (98.8%), although the applied NO\(_3^-\) concentration doubled (Fig. 2B; Table 2). A substantial improvement of S\(^0\) recovery was observed and maintained at a rather high level of 79.1% (Fig. 2C), possibly caused by the augmentation of external electron acceptor of NO\(_3^-\). The fine performance of S\(^0\) recovery and removal of COD, SO\(_4^2^-\) and NO\(_3^-\) indicated at an optimal running stage with the SO\(_4^2^-\)/S:NO\(_3^-\)-N ratio of 5.5.

However, when SO\(_4^2^-\)/S:NO\(_3^-\)-N ratio was further improved to 5:8 (stage III), a decrease in sulfate removal rate was observed although COD removal was further improved to 73.7% (Fig. 2A; Table 2). Meanwhile, S\(^0\) recovery rate quickly dropped to 60% within 5 days and in contrast, NO\(_3^-\) removal was maintained at the relative high lever (Fig. 2C; Table 2).

3.2. Performance in four compartments under SO\(_4^2^-\)/S:NO\(_3^-\)-N ratio of 5:5

As the optimal running results were observed at stage II, the exact performance in SR unit (compartment #1 and #2) and DSR unit (compartment #3 and #4) were investigated in Table 3. COD
removal was mostly accomplished in compartment #1, corresponding to SO$_4^{2-}$ reduction with considerable amount of S$_2^{2-}$/C0^+ generated. In comparison, compartment #2 undertook much fewer assignments on COD removal and SO$_4^{2-}$/C0^+ reduction. No further degradation of SO$_4^{2-}$ and COD seemed to appear in DSR unit (compartments #3 and #4). As NO$_3^-$ was added in influent of compartment #3 (the initiate of DSR unit), the converted S$_2^{2-}$ in SR unit was further oxidized to S0^+ accompanied with NO$_3^-$ reduction. Both NO$_3^-$ removal and S0^+ generation were majorly appeared in compartment #3.

3.3. Bacterial diversity analysis under SO$_4^{2-}$-S/NO$_3^-$-N ratio of 5:5

High-throughput sequencing was adopted to determine the abundance and diversity of bacterial populations at SR and DSR units, respectively, as shown in Fig. 3. Over 10,000 sequences were obtained for each sample. The Shannon index was calculated to estimate community diversity. The Shannon’s diversity index is $H = - \sum_{i=1}^{S} p_i \log(p_i)$, in which p_i is the proportion of individuals belonging to the ith species in the data set of interest. It could be deduced from the formula that tags at low frequencies either from

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running stage</td>
</tr>
<tr>
<td>Effluent (mg L$^{-1}$)</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
</tbody>
</table>

- a Removal rate (%) was calculated by dividing the effluent concentration with the influent concentration.
- b S0^+ generation rate (%) was calculated by dividing the effluent concentration of S0^+ with the concentration of SO$_4^{2-}$ in influent.
- c The data was the average results from triplicate samples with the standard deviation shown on the right side of “±”.

<table>
<thead>
<tr>
<th>Table 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average concentration of C, N and S in effluent of each compartment at steady state of running stage II.</td>
</tr>
<tr>
<td>Influent concentration</td>
</tr>
<tr>
<td>SR unit</td>
</tr>
<tr>
<td>#1</td>
</tr>
<tr>
<td>#2</td>
</tr>
<tr>
<td>DSR unit</td>
</tr>
<tr>
<td>#3</td>
</tr>
</tbody>
</table>

- a COD and SO$_4^{2-}$ were added in influent of compartment #1 and while NO$_3^-$ was added in influent of compartment #3.
- b The data were the average results from triplicate samples with the standard deviation shown on the right side of “±”.
- c ND indicated not detected with the measurement methods as described in Section 2.

Fig. 2. Performance of the ABR at stage I (SO$_4^{2-}$-S/NO$_3^-$-N = 5:2), stage II (SO$_4^{2-}$-S/NO$_3^-$-N = 5:5) and stage III (SO$_4^{2-}$-S/NO$_3^-$-N = 5:8). (A) The concentration and removal efficiency of COD. (B) The concentration change and removal efficiency of NO$_3^-$, (C) The concentration of SO$_4^{2-}$ in influent and S0^+ recovery in effluent.
shared OTUs were Peptostreptococcaceae, Proteiniclasticum, Thauera. A total of 65, 92, 958 and 893 OTUs were found in four compartments. About half of OTUs were shared with each other in both SR units (compartments #1 and #2) and DSR units (compartments #3 and #4), respectively. The Shannon indices and visual of Venn diagram indicated a distinct impact on microbial community by addition of nitrate.

3.4. Bacterial community analysis under SO_4^{2-}/S\cdotNO$_3^-$-N ratio of 5:5

Fig. 4 showed the bacterial communities in compartments #1 to #4 based on the 454 pyrosequencing analysis. The bacterial community in SR unit was dominated with Azoarcus (47.5% and 19.4% in #1 and #2, respectively), Proteiniclasticum (27.6% and 8.1% in #1 and #2, respectively) and Thauera (14.8% and 19.5% in #1 and #2, respectively). And while Thiobacillus (2.8%) was only appeared in #1, and Flavobacterium (10.7%) was existed in #2. Among of them, Azoarcus was able to degrade lactate to CO$_2$ and consume N-compound (Reinhold-Hurek et al., 1993; Mechichi et al., 2002). Thauera would transform SO$_4^{2-}$ to S$^2-$ with organic matters as electron donors and carbon sources (Zhang et al., 2010), which was probably the functional genus in charge of SO$_4^{2-}$ reduction.

Bacteria in DSR unit were much more diverse and majorly consisted of Sulfurovum (11.3% and 22.4% in #1 and #2, respectively), Acidiferrobacter (10.6% and 4.9% in #3 and #4, respectively), Marinicella (9.7% and 4.8% in #3 and #4, respectively) and Desulfobulbus (4.5% and 3.5% in #3 and #4, respectively). These populations held the capacity of conversion of S$^2-$ to S0, or NO$_3^-$ to N$_2$ (Widdel and Pfennig, 1982; Elshahed et al., 2003; Inagaki et al., 2004; Shoji et al., 2014). The introduction of nitrate enriched both sulfide-oxidizing and nitrate-reducing bacteria, which inhibited SRB and attributed to the enhancement of S0 reclamation. The dominants of Thauera in SR process and Sulfurovum and Acidiferrobacter in DSR process (Fig. 4) indicated a successful separation of SRB and SOB, which resulted in a high S0 recovery accompanied with the removal of SO$_4^{2-}$, NO$_3^-$ and COD.

3.5. qPCR analysis of dsrB and aprA genes under SO_4^{2-}/S\cdotNO$_3^-$-N ratio of 5:5

As shown in Fig. 5, dsrB gene was much more abundant than aprA gene in SR unit, with the log value ranging from 27.1 to 21.1 for dsrB and from 6.9 to 8.6 for aprA (copies gram of sludge), respectively. The log $dsrB/aprA$ value was 3.9 for compartment #1 and 2.4 for #2, respectively. In contrast, the aprA gene was rather higher than $dsrB$ gene, with the log value ranging from 27.8 to 18.1 for aprA gene and 7.7 to 10.1 for $dsrB$ gene (copies gram of sludge) in DSR unit, respectively. The log $dsrB/aprA$ value was 0.27 for compartment #3 and 0.56 for #4, respectively (Fig. 5). The difference on $dsrB$ and $aprA$ distribution verified the separated function in SR and DSR units. The results on microbial community and functional genes indicated the shift of SRB and SOB took important roles in sulfur reclamation.

3.6. Discussion

In this study, a high sulfate to elemental sulfur conversion rate (79.1%) was obtained by separating SR and DSR functional units, which overcame the technical difficulties brought by the niches difference of SOB and SRB in integrated systems. Previously, several studies have focused on the simultaneous removal of carbon, nitrate and sulfur. Reyes-Avila et al. (2004) applied a CSTR reactor for simultaneous removal of NO$_3^-$, S$^2-$ and COD, with a rather low S0 recovery of 0.3%. Krishnakumar et al. (2005) reported the sulfide oxidation by Thiobacillus denitrificans in a reverse fluidized loop.
Lactate and NO$_2^-$

\[
\text{Lactate}
\]
\[
\text{NO}_2^-
\]

Relative abundance (%)

![Graph showing microbial community analysis in four compartments of ABR reactor at the steady state of stage II. The blue arrows indicated sulfur migration and flow direction, bar graph suggested bacterial communities for 454 pyrosequencing at the genus level obtained from Silva database project classifier analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image)

Fig. 4. Microbial community analysis in four compartments of ABR reactor at the steady state of stage II. The blue arrows indicated sulfur migration and flow direction, bar graph suggested bacterial communities for 454 pyrosequencing at the genus level obtained from Silva database project classifier analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Abundance of dsrB and aprA gene copies and dsrB/aprA ratio in compartments #1 to #4 at the steady state of stage II.

reactor and revealed that under pH-controlled condition 95% of the fed sulfide was converted to S0. Chen et al. (2008) developed the removal processes of carbon, nitrate and sulfur, which achieved a highest S0 recovery rate of 90% using EGSB reactor. Since the natural existed sulfur was majorly drawn from sulfate reduction, the recovery of S0 from sulfate embodied more engineering significance (Show et al., 2013). Xu et al. (2012, 2014) applied micro-aerobic DO into the EGSB reactor with the S0 recovery rate of 71.8%, and however, the technical difficulties of precise control of DO level largely reduced the practical application possibility. Yuan et al. (2014) evaluated the tuning parameters to regulate the SR and DSR processes in EGSB reactors and yet, only 60% of S0 recovery was obtained. In sum, the separated SR and DSR processes in ABR system in this study obtained the highest S0 recovery rate from sulfate ever reported.

Lactate was proven as the more favorable substrate than hydrogen, methanol, ethanol, and acetate for sulfate reduction (Liamleam and Annachhatre, 2007). Hence, in SR unit, lactate was applied as both electron donor and carbon source (CH$_3$CHOHCOOH + 0.5H$_2$SO$_4$ → CH$_3$COOH + CO$_2$ + 0.5H$_2$S + H$_2$O);

acetate, a sulfate reducing metabolite, can be further utilized as electron donor during SR process (CH$_3$COO$^- + SO_4$$^{2-}$ → HS$^- + $2HCO$_3$). Besides, SRB could use hydrogen generated during lactate fermentation process (i.e. 4H$_2$ + SO$_4$$^{2-}$ + H$^+$ → HS$^- + $4H$_2$O) (Liamleam and Annachhatre, 2007). Assuming COD/SO$_4$$^{2-}$ ratio of 0.667 and COD/cell ratio of 1.42 (cell formula of C$_6$H$_5$O$_2$N)$_2$, COD balance was calculated according to the data of influent and effluent (Fig. 3). COD consumed for SR and biomass were 632.1 mg and 26.2 mg (#1) and 455.2 mg and 18.9 mg (#2), which took up 26.2% and 4.6% (#1) and 18.9% and 1.2% (#2) of influent COD, respectively. After subtraction of effluent COD (35.1% for #1, 90.2% for #2), about 19.9% and 1.5% of COD were missing in #1 and #2, respectively. The missing COD was attributed to the involvement of the other biochemical reactions, like methane generation (i.e. CH$_3$COOH → CH$_4 + 4$H$_2$O) (Show et al., 2013) or etc.

In compartment #3 and #4, S0 generation was proceeded autotrophically by using S$^- -$ as the electron donor and while NO$_3^-$ was applied as an electron acceptor (S$^0 + 0.4$NO$_3^- + $1.2H$_2$O → S$^0 + 2N_2 + 2.4H_2O^-$. Assuming all NO$_3^-$ contributed to DSR process with NO$_3^-$/S$^-$ ratio of 0.91, NO$_3^-$ mass balance was calculated according to the data of influent and effluent (Fig. 3). NO$_3^-$ consumed for S0 - oxidation were 247.9 mg and 67.8 mg in #3 and #4, respectively, which occupied 31.6% and 39% of influent NO$_3^-$.

Comparing the performance of stage II and III, the SRB and SOB community maintain their activity and SO$_4$$^{2-}$ as the end product rather than S0. Hence, the prominent S0 recovery, COD and nitrate removal require the balance of microbial growth and nutrient transports and the relationship to electron donors. Since NO$_3$ is a strong inhibitor in both growth and activity of SRB (Hao et al., 2014), no sulfate reduction was estimated in #3 and #4, confirmed by the much...
lower aprA genes in #3 and #4 compared with #1 and #2 (Fig. 5). Meanwhile, the addition of NO3− effectively avoided the inhibition of sulfate and nitrite reduction and achieved both the high SR rate and S2O3− recovery rate. In stage III with SO42−/S2O3−/NO3− ratio was further improved to 5:8, the drop in S0 recovery and sulfate removal was probably attributed to the application of excess amount of NO3−, which was probably aroused from some other unwanted bio-reactions, such as the S0 further reduction to sulfur using the redundant nitrate or S2O3− oxidation directly to SO42− with the sufficient nitrate.

SO42−/S2O3−/NO3− ratio played an important role in ABR reactor since it largely affected the S0 recovery rate. The microbial analysis on the SO42−/S2O3−/NO3− ratio of 5:5 confirmed nitrate as a key factor to control the shift of SRB and SOB community. SR process appeared in the first and second compartments, confirmed by sulfate-reducing populations (such as Thauera sp. with a functional gene like dsrB). However, DSR was occurred at the third and fourth compartments, verified by sulfide-oxidizing bacteria (such as Sulfurovum sp. or Acidiferrobacter sp. with the functional gene like aprA). Effective regulation of SO42−/S2O3−/NO3− ratio would realize the functional reaction separation and maximize the activity of SRB and SOB community.

4. Conclusion

Here, we depicted for the first time the removal of organic matter, sulfate and nitrite and generation of S0 in an ABR with the separated units of SR and DSR, which achieved a high S0 recovery rate of 79.1%. The alteration of SO42−/S2O3−/NO3− ratio and description on microbial diversity/function genes suggested the optimized performance condition in ABR with a benefit of enhancing S0 recovery.

Acknowledgements

We gratefully acknowledge the support by the National High-tech R&D Program of China (863 Program, Grant No. 2011AA060904), by National Science Foundation for Distinguished Young Scholars of China (Grant No. 51225802), by Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51121062), by National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2010BAC67802), by the National Natural Science Foundation of China (Grant Nos. 51176037 and 51308147), and by Fundamental Research Funds for Central Universities of China (AUGA5710055514).

References

