Effect of pyrene on denitrification activity and abundance and composition of denitrifying community in an agricultural soil

Guang-Xia Guo a, Huan Deng a, Min Qiao a, Yu-Jing Mu a, Yong-Guan Zhu a,b,*

a State Key Lab of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
b Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

ARTICLE INFO

Article history:
Received 25 October 2010
Received in revised form 18 March 2011
Accepted 19 March 2011

Keywords:
Denitrifiers
EC50
Phylogenetic analysis
Temporal shifts
Diversity

ABSTRACT

Toxicity of pyrene on the denitrifiers was studied by spiking an agricultural soil with pyrene to a series of concentrations (0–500 mg kg−1) followed by dose–response and dynamic incubation experiments. Results showed a positive correlation between potential denitrification activity and copy numbers of denitrifying functional genes (nirK, nirS and nosZ), and were both negatively correlated with pyrene concentrations. Based on the comparison of EC50 values, denitrifiers harboring nirK, nirS or nosZ gene were more sensitive than denitrification activity, and denitrifiers harboring nirS gene were more sensitive than that harboring nirK or nosZ genes. Seven days after spiking with EC50 concentration of pyrene, denitrifiers diversity decreased and community composition changed in comparison with the control. Phylogenetic analyses of three genes showed that the addition of pyrene increased the proportion of Bradyrhizobiaceae, Burkholderiales and Pseudomonadales. Some species belonging to these groups were reported to be able to degrade PAHs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) have been identified as carcinogenic, mutagenic, and teratogenic (Perera, 1997). As a result, the US Environmental Protection Agency (US EPA) and the European Community placed PAHs in the priority pollutant list (Wild and Jones, 1995). Unfortunately, PAHs pollutant streams that enter the environment have not been sufficiently stemmed; indeed their intensity continues to increase, mainly due to the rising demand for fossil fuels (Conte et al., 2001). Being both chemically very stable while exhibiting a high hydrophobicity ensures that PAHs are effectively adsorbed onto soil particles and in particular soil organic matter (Means et al., 1980). With the continued build-up of PAHs in soil, the resulting impacts on soil ecosystem health are of great concern, with several studies having been carried out to evaluate the toxic effects of PAHs on dehydrogenase and urease activities, soil respiration (Miles and Doucette, 2001; Klimkowicz-Pawlas and Maliszewska-Kordybach, 2003) and soil bacteria in relation to nitrogen (N) cycle (e.g. nitrifying bacteria) (Maliszewska-Kordybach et al., 2007).

Denitrification is a crucial microbial process in the N cycle in which oxidized N compounds (NO3−, NO2−) are reduced into gaseous products (NO, N2O, and N2). N2O is the potent greenhouse gas that can cause ozone depletion in the stratosphere. Soils are considered to be the major source of N2O emission contributing 65% of the total global emission, with 6.0 Tg N2O–N yr−1 from natural soils and 4.2 Tg N2O–N yr−1 from agricultural soils (Intergovernmental Panel on Climate Change, 2001). Studies have shown that denitrifying communities are affected by soil conditions including temperature, moisture, pH and substrate (e.g. NO3−, organic carbon) concentration (Braker et al., 2010; Henderson et al., 2010; Liu et al., 2010; Stres et al., 2008; Lalisse-Grundmann et al., 1988; Renner and Becker, 1970). High exposures to metals such as cadmium, copper, zinc and silver can also be detrimental to denitrifying communities (Holtan-Hartwig et al., 2002; McKenney and Vriesacker, 1985; Throbäck et al., 2007). In addition, the selective inhibition of different steps in the denitrification process in soil could aggravate the ecological consequences of pollution. It has been shown that the reduction of NO2− appeared to be more sensitive than the reduction of NO3− (Bollag and Barabasz, 1979; McKenney and Vriesacker, 1985), which would result in the accumulation of NO2− to toxic levels, and a selective inhibition of NO reductase or N2O reductase by heavy metals enhanced NO or N2O emission from soils (Holtan-Hartwig et al., 2002). With the increase of PAHs in soil, ecotoxicity of PAHs on denitrification in soil deserves more attention. It is therefore of ecological significance to understand the responses of denitrifying communities and their functions in different phases of...
denitrification processes in soil to PAHs stress, and to identify sensitive and resistant organisms.

A complete denitrification process involves a nitrate reductase encoded by the *nirK* or *nirS* gene, a nitric oxide reductase encoded by the *qnrB* or *cnaB* gene and a nitrous oxide reductase encoded by the *nosZ* gene. Most denitrifiers belong to a wide range of subclasses of *Proteobacteria*, while there are still some closely related to Archaea, halophilic and hyperthermophilic branches as well as mitochondria of certain fungi (Zumft, 1997). The common difference between true denitrifiers and other microorganisms with nitrate-reducing ability is that the true denitrifiers have either a copper-containing enzyme encoded by *nirK* or a cytochrome cd1 enzyme encoded by *nirS* (Braker et al., 2000; Zumft, 1997). Therefore, the *nirK* and *nirS* genes have frequently been used as gene markers to analyze denitrifying community. Although some denitrifiers lack this nitrous oxide reductase enzyme, the *nosZ* gene could be used as a target for different populations of the denitrifying bacteria capable of nitrous oxide reduction (Throbäck et al., 2004). Since not all denitrifiers have the complete suite of denitrification enzymes (Zumft, 1997), two or more functional genes are often used as molecular markers for this microbial group. In most studies, the analyzes of the molecular ecology of the denitrifying community were based on *nirK*, *nirS* and *nosZ* genes (Braker et al., 2000; Throbäck et al., 2004). The activity of reductases and the expression of functional genes involved in denitrification process varies among individual strains (Zumft, 1997), and community composition is thus considered to be able to influence functionality at both community and ecosystem levels (Braker et al., 2010). Nevertheless, some studies have reported correlations between abundance and function as well as between structure and function of denitrifying communities (Bremer et al., 2009; Hallin et al., 2009; Rich et al., 2009; Wertz et al., 2009). Therefore, it is important to determine the correlations among changes in function, abundance and composition of the denitrifying community in an agricultural soil in response to PAHs stress.

The objective of this study was therefore to assess the toxicity of pyrene on denitrification activity and the abundance, diversity and composition of the denitrifying community. In order to make comprehensive assessment, acute toxicity and dynamic toxicity were tested. The acute toxicity was determined through a dose–response test of denitrification activity and abundance of denitrifiers against pyrene. The dynamic toxicity was determined during a 7-day course after pyrene perturbation by measuring *N*2O accumulation and reduction as well as the diversity and community composition of the denitrifiers.

2. Material and methods

2.1. Soil sampling and characteristics

The soil sample was collected from the surface (0–20 cm in depth) of an agricultural field located in Beiye Chang (39°44′N,116°25′E), Daxing district, Beijing, in September 2008. *Brassica rapa* pekinensis, *Raphanus sativus* and *Brassica oleracea var. botrytis* were grown in this field. This field has been regularly fertilized with organic manure and ammonium nitrate for more than twenty years. After visible thick roots was stored at 260 and 280 nm. 260/280 ratios were found to be all above 1.8. The DNA solution was stored at −20 °C until further experiments were conducted. Part of the soil sample was air-dried and passed through a 0.45 mm sieve for chemical analyses. Soil pH was determined by a pH meter (FE20, METTLER TOLEDO, Switzerland) at a soil: water ratio of 1: 2.5 (w/v). Nitrate and ammonium were determined by an autoanalyser (SAN+–), SKALAR (Netherlands). Total organic carbon was determined by Element Analyzer (Vario EL III, Elementar, USA). We measured 16 PAHs which were listed as priority pollutants by US EPA in triplicate by GC–MS (6890N/5975C, Agilent, USA) according to the EPA method 8270. Characteristics of the soil sample were as follows: pH, 7.69; NO3− - N, 384 mg kg−1; NH4+-N, 772 mg kg−1; organic carbon, 19.9 g kg−1; pyrene, 50.7 μg kg−1; TPAs, 1.03 mg kg−1.

2.2. Spiking of soil with pyrene

Crystalline pyrene (108162, Alfa-Aesar, Lancaster, USA) was dissolved in acetone and uniformly sprayed onto soil to produce sub-samples with pyrene levels of 0 (pyrene-free, with acetone only), 20, 50, 100, 200, 400, 700, 1000, 2000 and 5000 mg kg−1 dry weight soil (Brinch et al., 2002; Peng et al., 2010). These sub-samples were homogenized by continuous hand shaking in 1000 mL glass bottles and the bottles were closed for 5 min to let the solvent disperse, followed by storage at 25 °C in the dark for 16 h. When acetone was evaporated off, sub-samples were mixed with non-spiked soil at the ratio of 1:9 and shaken thoroughly, generating final pyrene levels of 0 (non-spiked control), 2, 5, 10, 20, 40, 70, 100, 200 and 500 mg kg−1 dry weight soil (denoted as Pr2, Pr5, Pr10, Pr20, Pr40, Pr70, Pr100, Pr200 and Pr500, respectively). The pyrene-spiked samples were continuously shaken by hand to ensure homogeneous distribution of pyrene in the soil. Triplicate samples of each treatment were collected and stored at −80 °C for DNA extraction and quantitative PCR, and other used for acute and dynamic incubation experiments.

2.3. Denitrification activity

Potential denitrification activity (PDA) was determined by using the acetylene (C2H2) inhibition technique (Smith and Tiedje, 1979; Schinner et al., 1996). In this study, we modified the method by omitting any extra nitrate and carbon since the content of NO3− – N and organic carbon was already high (384 mg kg−1 and 19.9 g kg−1, respectively) due to excessive fertilization. It was reported that the optimum concentrations for NO3− – N should not exceed 50 mg kg−1, and an excess of NO3− – N (>100 mg kg−1 dry soil) might inhibit N2O production (Lalisée-Grundmann et al., 1988; Renner and Becker, 1970).

Quadruplicates of pyrene-spiked soil (5 g fresh soil) were weighed into 120-ml serum bottles capped with butyl rubber septa. The acute toxicity was added to the headspace (injection and subsequent release of over-pressure, final concentration 10% v/v) to inhibit N2O reduction. All bottles were incubated at 25 °C in the dark for 24 h. Gas samples (1 mL) were withdrawn from bottles by glass precision gas syringes and were injected into P2-filled (1 atm) 29.0 mL vials capped with butyl rubber septa. These diluted gas samples were then analyzed for N2O by a gas chromatograph (SP3410, Beijing Analytical Instrument Factory) connected to an ECD detector as described previously by Pang et al. (2009), and the amount of N2O in the headspace and PDA were calculated as indicated by Schinner et al. (1996).

2.4. Time-course of N2O accumulation and reduction

Dynamic of N2O accumulation and reduction were determined by anaerobic incubation with and without C2H2 (Yoshinari et al., 1977). Non-spiked control soil and soil treated with EC50 concentration of pyrene (concentration of pyrene in soil causing 50% inhibition of denitrification activity; denoted as EC50 treatment) were prepared for the dynamic experiment. Fifteen grams of soil (fresh weight) was transferred to a 120-ml serum bottle capped with butyl rubber stoppers, with eight replicates for each treatment. Soil moisture, oxygen-exhaust and soil incubation conditions were as the same as for the PDA experiment. Four of eight replicates in each treatment were randomly selected and injected with 10% C2H2 (final concentration 10% v/v) to inhibit the N2O reduction. The moment of the injection of C2H2 was regarded as the start of incubation. All bottles were then incubated at 25 °C in the dark for 7 days. The N2O concentration of each replicate was analyzed at intervals of 24 h. Triplicate soil samples of each treatment (control and EC50, without C2H2) were collected at the end of incubation (on the 7th day) and stored at −80 °C before DNA extraction.

2.5. DNA extraction

The DNA was extracted from 0.5 g soil (stored at −80 °C) with the Fast DNA SPIN kit for soil (BIO101) following the manufacturer's instructions. The recovered DNA was eluted in 10 mM Tris–HCl buffer (pH 7.5). The purity and the quantity of the DNA were determined by UV–Vis Spectrophotometer (ND-1000, NanoDrop, USA) at 260 and 280 nm. 260/280 ratios were found to be all above 1.8. The DNA solution was stored at −20 °C.

The DNA extraction of the soils spiked with 0–500 mg kg−1 of pyrene were destined to real-time quantitative PCR, and DNA from the EC50 experiment to clone libraries of functional genes.

2.6. Real-time quantitative PCR

Quantification of *nirK*, *nirS* and *nosZ* genes was performed on a iCycler iQ®5 Thermocycler (BioRad, USA). The 25-μL reaction mixtures contained 12.5 μL of SYBR
Green Premix ExTaq (TaKaRa, Japan), 0.5 μL of each 20 μM primer, 0.25 μL 25 mM BSA and 1 μL of template DNA. Thermal cycling conditions for nirK and nirS genes were as follows: pre-incubation at 94 °C for 2 min, 40 cycles consisting of denaturation at 94 °C for 30 s, annealing at 58 °C for 30 s, extension at 72 °C for 30 s, and fluorescence was read during each cycle at 83 °C for 10 s, followed by melting curve analysis at 58–94 °C (0.5 °C per reading), 10 s hold. Thermal cycling conditions for nosZ gene were similar to that of nirK and nirS genes except for the annealing temperature starting at 58 °C for the initial 5 cycles with touchdown of –1 °C by cycle followed by 53 °C for 35 cycles, and melting curve analysis at 53–94 °C (0.5 °C per reading).

The standard curves for the quantitative PCR were established using nirK, nirS and nosZ gene fragments cloned into plasmid pGEM-T Easy Vector (3015 bp, Promega, Madison, USA), nirK, nirS and nosZ gene fragments were amplified with the primer pairs 1F and 5R (Braker et al., 1998), R3cd and cd3AF (Michotey et al., 2000), Z-F and H2Z2R (Throbäck et al., 2004), respectively. The amplicons were gel-purified using the Gel Clean-up System (Promega, Madison, USA) and cloned using the pGEM-T Easy cloning kit according to the manufacturer’s instructions. Plasmids were transformed into *Escherichia coli* JM109 competent cells. Plasmid DNA was extracted using a Qagen Plasmid Mini Kit (Qagen Nordic) and plasmid concentration was determined by using a NanoDrop ND-1000 spectrophotometer. Plasmid DNA was diluted in ten-fold series to generate standard curves. All quantitative PCR reactions including unknown samples and standard curves were performed in triplicate and no template control (NCT) treatments were included in all runs.

2.7. Cloning, sequencing and phylogenetic analysis

For the construction of a clone library, DNA extracts from three replicated soil samples were mixed and served as the template of PCR. Three primer sets (1F/5R, R3cd/cd3Af, Z-F/H2Z2R) as described above were used in the PCR amplification of nirK, nirS and nosZ gene fragments. The 25-μL reaction mixtures contained 1 μL of template DNA, 0.5 μL of each 20 μM primer, 2.5 μL of 10× buffer (MgCl₂ plus), 2 μL of 10 mM dNTPs mixture (2.5 mM of each), 0.25 μL of 25 mM bovine serum albumin (BSA), and 1.25 units of Taq DNA polymerase (Takara). Thermal cycling conditions were the same as those of quantitative PCR. PCR products of the correct size were purified and then ligated to pGEM-T Easy Vector and transformed into *Escherichia coli* JM109 competent cells. The bacteria were transferred into LB agar (containing ampicillin, X-Gal and IPTG) plates. After incubation overnight at 37 °C, white colonies (putative positive clones) were picked as correct inserts. More than fifty white clones were selected for each treatment. In total, three separate clone libraries (NirK clone library, NirS clone library and NosZ clone library) were constructed for control and EC50 treatments, respectively. The insert size in each clone was examined by vector-targeted PCR (primers T7 and SP6). The clones with correct insert size were used for sequencing analyses in SinoGeneMax Co., Ltd (Beijing, China).

Vector and primer sequences were removed using DNASTAR Lasergene 7.1. The nucleotide sequences of gene fragments cloned into plasmid pGEM-T Easy Vector (3015 bp, Promega, Madison, USA) were submitted in GenBank database under the following accession numbers: nirK, HQ221373–HQ221409; nirS, HQ221410–HQ221435; and nosZ, HQ221436–HQ221463.

2.8. Data analyses

Ecotoxicity of pyrene for denitrification was described by EC50 values which were calculated on the basis of Logistic functions regression models assessing the relationships of pyrene concentration–PDA and pyrene concentration–copy numbers of nirK, nirS and nosZ genes by using SigmaPlot5 (Jandel Corporation, CA, USA) (Throbäck et al., 2007). Phylogenetic analysis was performed using a neighbor-joining algorithm and distance calculation by MEGA4. Sequences that were 95% or more identical were considered as a unique operational taxonomic unit (OTU) (Katuyama et al., 2008). Phylogenetic analysis was performed using a neighbor-joining algorithm and distance calculation by MEGA4. Sequences that were 95% or more identical were considered as a unique operational taxonomic unit (OTU) (Katuyama et al., 2008). The nucleotide sequences of nirK, nirS and nosZ gene fragments determined in this study were submitted in GenBank database under the following accession numbers: nirK, HQ221373–HQ221409; nirS, HQ221410–HQ221435; and nosZ, HQ221436–HQ221463.

3. Results

3.1. Potential denitrification activity

Potential denitrification activity (PDA) was expressed in terms of N₂O concentration in the serum bottle headspace (Fig. 1). PDA decreased with increasing pyrene concentrations, and was lower (0.16 mg N kg⁻¹ h⁻¹) in the Pr500 treatment. PDA in spiked soil was not significantly lower than the control until pyrene concentration was as high as 70 mg kg⁻¹. The mean EC50 value of pyrene for PDA was 59.7 mg kg⁻¹ (r² = 0.97, P < 0.0001).

3.2. Dynamics of N₂O accumulation and reduction

One day after pyrene perturbation, N₂O accumulation (NA) and N₂O reduction rate (NR) in the EC50 treatment were 213% and 55.5% of those in the control treatment (Fig. 2). However, NA of the EC50 treatment increased to 438% times of the control treatment on the 4th day and then decreased to 162% of the control treatment on the 7th day. NR of the EC50 treatment increased to 96.3% of the control treatment on the 3rd day. From the 3rd day to the 7th day, NRs of the two treatments were comparatively stable, and the ratio of NR of the EC50 treatment to that of the control treatment fluctuated within the range of 96.3–98.6%. Meanwhile, the soil pyrene...
concentration of the EC50 treatment declined from 59.7 mg kg\(^{-1}\) on the 1st day to 33.4 mg kg\(^{-1}\) on the 7th day.

3.3. Abundance of nirK, nirS and nosZ genes

The copy numbers of nirK, nirS and nosZ genes in response to pyrene concentrations are shown in Fig. 3. The copy numbers of nirK gene (around 10\(^7\)) in the control and spiked treatments were an order of magnitude lower than those of the nirS and nosZ genes (around 10\(^8\)) in respective treatments. The copy numbers of the three genes generally decreased with the increase of pyrene concentrations with the exception that the copy numbers of nirK gene in the Pr2 (4.40 × 10\(^7\) copies g\(^{-1}\) dry soil), Pr10 (4.24 × 10\(^7\) copies g\(^{-1}\) dry soil) and Pr20 (4.02 × 10\(^7\) copies g\(^{-1}\) dry soil) treatments were significantly higher than the non-spiked control (3.66 × 10\(^7\) copies g\(^{-1}\) dry soil). The EC50 values of pyrene for copy numbers of nirK, nirS and nosZ genes were 39.3, 17.7 and 31.5 mg kg\(^{-1}\) (r\(^2\) > 0.85 and P < 0.01, figures not shown), respectively. The linear regression (r\(^2\) > 0.74, P < 0.01) showed that PDA was positively correlated with copy numbers of the three genes (Fig. 4).

3.4. Diversity of the denitrifying community

Diversity of the denitrifying community was evaluated by Shannon–Weiner index and Simpson’s Reciprocal index based on NirK, NirS and NosZ clone libraries in the control and EC50 treatments (Table 1). A total of 93 clones and 37 OTUs for nirK gene, 89 clones and 26 OTUs for nirS gene as well as 97 clones and 31 OTUs for nosZ gene were obtained from the control and the EC50 treatments. Both Shannon index and Simpson index of the three genes in the control treatment were higher than in the EC50 treatment.

3.5. Phylogenetic trees of nirK, nirS and nosZ genes

Phylogenetic trees based on the NirK, NirS and NosZ nucleic acid sequences (480 bp, 371–386 bp and 387–420 bp, respectively) are shown in Figs. 5–7, respectively. The clones of the three genes obtained in this study spread throughout the trees and affiliated to Proteobacteria. The phylogenetic tree of the nirK gene was divided into five major clusters (cluster I–IV). The clones belonging to clusters I, II and III were closely related to Rhizobiaceae, Bradyrhizobiaceae and Phyllobacteriaceae, respectively, affiliated to Alphaproteobacteria. The clones belonging to IV were closely related to Alcaligenaceae, affiliated to Betaproteobacteria.

The NirS tree was divided into six clusters (cluster I–VI). The NirS clones in clusters II and III were primarily related to NirS of Rhodobacteraceae and Bradyrhizobiaceae, respectively, affiliated to Alphaproteobacteria. The NirS clones in cluster IV were relatively closely related to NirS of Rhodocyclaceae, affiliated to Betaproteobacteria. NirS clones in cluster V were relatively closely related to NirS of Pseudomonadaceae, affiliated to Gammaproteobacteria, while those in clusters I and VI were relatively distantly related to NirS of known denitrifying bacteria. BLAST homology search also showed that the clone sequences in clusters I and VI did not match NirS from any denitrifiers isolates, although some of them showed high similarities to uncultured deduced NirS clones from environmental samples. The NosZ tree was divided into seven clusters (cluster I–VII). NosZ clones in clusters I, II and IV were relatively closely related to NosZ of Brucellaceae, Rhizobiaceae, Bradyrhizobiaceae and Rhodospirillaceae, respectively, belonging to Alphaproteobacteria. NosZ clones in clusters V, VI and VII were closely related to NosZ of Alcaligenaceae, Burkholderiaceae and Oxalobacteraceae, respectively, belonging to Betaproteobacteria.

3.6. Shifts of NirK, NirS and NosZ diversities

Relative abundance of NirK, NirS and NosZ clones of the EC50 treatment was different from that of the control treatment (Fig. 8).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Diversity indices of nirK, nirS and nosZ clones in the control and EC50 treatments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>Name of treatments</td>
</tr>
<tr>
<td>nirK</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>nirS</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>nosZ</td>
<td>Control</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>
In the EC50 treatment, the proportions of the NirK clones belonging to cluster I and cluster III decreased by 12.6% and 4.95%, respectively, compared to the control treatment, while those belonging to clusters II and IV related to *Bradyrhizobiaceae* and *Alcaligenaceae* increased by 14.4% and 4.21%, respectively.

The proportions of the NirS clones belonging to clusters II, III and VI decreased by 12.1%, 1.82% and 3.63%, respectively, compared with the control treatment. The NirS clones belonging to cluster IV related to *Rhodocyclaceae* were detected in the control treatment but not in the EC50 treatment. A notable change...
was that the proportion of the clones belonging to cluster I (unknown branch) increased 25.1% in the EC50 treatment. In addition, the proportion of the NiRS clones related to Pseudomonadaeae slightly increased with the addition of pyrene.

In the EC50 treatment, the proportion of NosZ clones belonging to the cluster I decreased by 4.29%, while those belonging to cluster IV related to Rhodospirillaceae increased by 2.00%, and those belonging to V and VII affiliated to Burkholderiales increased by 2.95%, compared to the control treatment, respectively. The NosZ clones in cluster III related to Bradyrhizobiaceae increased by 2.95%, compared to the control treatment, respectively. NosZ clones in cluster IV related to Rhodospirillaceae increased by 2.00%, and those belonging to V and VII affiliated to Burkholderiales increased by 2.95%, compared to the control treatment, respectively. The NosZ clones in cluster III related to Bradyrhizobiaceae which were detected in the control treatment but not in the EC50 treatment.

4. Discussion

4.1. Potential denitrification activity and dynamic of N2O

Our results showed that PDA generally decreased with increasing pyrene concentrations. This was consistent with the results obtained by Contreras-Ramos et al. (2009) that the addition of PAHs to the sludge-amended soil reduced the N2O emission rate. Maliszewska-Kordybach et al. (2007) tested EC50 values of phenanthrene for nitrification potential in 50 different soils and found that the EC50 values were within the range of 146–1670 mg kg−1. In our study, the mean EC50 value of pyrene for PDA was lower than this range. The lower EC50 of pyrene than phenanthrene could be mostly attributed to the fact that the toxicity of phenanthrene with three benzene rings was lower than that of pyrene with four benzene rings and that phenanthrene was easier to be degraded than pyrene.

In the time-course experiment, the N2O accumulation of the EC50 treatment was higher than that of the control treatment. Holtan-Hartwig et al. (2002) also found that N2O accumulated to a higher level in the heavy metal-spiked soil than in the non-spiked soil. This was likely because N2O reductase was inhibited more readily by pyrene than NO reductase and the selective inhibition resulted in the accumulation of N2O (Holtan-Hartwig et al., 2002). The N2O accumulation and N2O reduction in the EC50 treatment gradually diminished, and was close to the level of the control treatment during the 7-day incubation. Meanwhile, pyrene concentration of the EC50 treatment declined during the 7-day incubation. Previous studies showed that PAHs could be degraded under denitrifying conditions by using nitrate as electron acceptors, a mechanism named co-metabolism (Ambrosoli et al., 2005; Coates et al., 1997; McNally et al., 1998; Rockne and Strand, 2001; Rockne et al., 2000). Pollutant degradation and transformation to more volatile or less toxic forms were commonly used strategies for bacteria to reduce the toxicity of their immediate surroundings (Ford, 1993). In our study, most of the denitrifiers were closely related to the orders of Rhizobiales, Rhodobacteriales, Burkholderiales and Pseudomonadaeae through phylogenetic analyses, and it has been reported that some species in these orders (Keum et al., 2006; Johnson et al., 2004; Zhang et al., 2004; Guo et al., 2008; Balashova et al., 1999), and a great number of other bacterial and fungal species in soil (Haritash and Kaushik, 2009) could degrade PAHs through co-metabolism. Degradation as well as aging of PAHs could alleviate stress and promote the recovery of denitrification enzyme activity (Maliszewska-Kordybach, 2005).
4.2. Abundance of the denitrifying community

Our results showed that the copy numbers of the nirK gene were around 10^7, while those of nirS and nosZ genes were as high as 10^8, indicating that nirS and nosZ genes were dominant in the present agricultural soil. Some studies, however, showed much lower copy numbers (10^6) for the nirS gene and similar copy numbers for the nirK gene (10^7) in paddy soil (Yoshida et al., 2009, 2010). The niche differentiation or abundance difference in the nirS- and nirK-type denitrifiers depended on the habitat selection (Enwall et al., 2010) and nutrient concentration. The nirS population was more adapted to soils with comparatively high concentrations of organic nutrients (Cole et al., 2004) and NO3−N (Bárta et al., 2010). Due to fertilization, the present soil was high in organic carbon (19.9 g kg⁻¹) and NO3−N (313 mg kg⁻¹), and high soil fertility might be responsible for the high copy numbers of the nirS gene.

Our study clearly showed that PDA was positively related to the copy numbers of nirK, nirS and nosZ genes, and high concentration of pyrene addition decreased both PDA and the abundance of denitrifiers harboring the three genes. Previous studies showed that denitrification enzyme activity was correlated with the copy numbers of nirK gene (Throbäck et al., 2007) and nosZ gene (Hallin et al., 2009), suggesting that denitrifiers harboring these functional genes played an important role in the denitrification process, and
the abundance of the denitrifying community could predict the corresponding process (Hallin et al., 2009).

The mean EC50 values of pyrene for copy numbers of nirK, nirS and nosZ genes were lower than that of pyrene for PDA, indicating that denitrifiers harboring nirK, nirS or nosZ gene was more sensitive to pyrene than PDA, and denitrifiers harboring nirS gene was more sensitive to pyrene than that harboring nirK or nosZ gene. Previous studies suggested that soil microorganisms, being in intimate contact with the soil environment, could be considered as the best indicators of soil pollution because they might be responsive to contaminants and react rapidly to soil perturbation (Maliszewska-Kordybach et al., 2007). Considering that nirK and nirS genes carry out nitric oxide reduction process whereas nosZ gene implements nitrous oxide reduction, our study further demonstrated that microbial functions and abundance of microorganisms carrying out different denitrification processes were different in sensitivity to pyrene contamination.

4.3. Shifts in diversity and composition of the denitrifying community

In our study, both Shannon index and Simpson index of nirK, nirS and nosZ genes decreased with the addition of pyrene, indicating that pyrene reduced denitrifiers diversity. It has been reported that the addition of heavy metals or organic pollutants could decrease microbial diversity (Shannon index and richness) (Bamborough and Cummings, 2009; Kozdrój and van Elsas, 2001). The two diversity indices for nirK gene in our study were similar to those reported in forest soils and a paddy soil (Katuyama et al., 2005). However, the diversity indices for nirS gene in our study were lower than those in a flooded padd field reported by Yoshida et al. (2009). There are substantial evidences that the diversity and composition of soil bacterial communities can be influenced by a wide range of biotic and abiotic factors including vegetation, trophic status, salinity, soil pH and heavy metals (McArthur et al., 1988; Lefranc et al., 2005; Lozupone and Knight, 2007; Fierer and Jackson, 2006; Gans et al., 2005).

Based on the nirK clone library analysis, the majority of clones from clusters I, II and III were related to Rhizobiales (Rhizobiaceae, Bradyrhizobiaceae and Phyllobacteriaceae), and few clones in cluster IV were related to Burkholderiales (Alcaligenaceae), similar to the previous studies (Bremer et al., 2007; Saito et al., 2008; Yoshida et al., 2009). However, this did not mean that these nirK-harboring denitrifiers belonged to Rhizobiales or Burkholderiales, since the nirK phylogeny was incompatible with the 16S rDNA phylogeny (Heylen et al., 2006; Jones et al., 2008; Philippot et al., 2002; Yoshida et al., 2009). Our results showed that over 80% of NirS clones distributed in clusters I and VI (unknown branch), cluster II (Rhodobacterales). The NirS clones in clusters I and VI were distantly related to known denitrifiers, and some of our clones in the two clusters were dissimilar to the uncultured NirS clone sequences (e.g. AM419603.1 and EF6154611), indicating that they were unique to our soil. However, Saito et al. (2008) reported that NirS clones related to Burkholderiales and Rhodocyclaceae dominated in the rice paddy soil (Saito et al., 2008). A possible reason was that plant communities or the rhizosphere and soil factors could affect the structure and activity of the denitrifying community (Kowalchuk et al., 2002; Philippot et al., 2002). Based on the nosZ clone library analysis, the overwhelming majority of clones (Cluster I–III, and cluster V–VII) were related to Rhizobiales (Brucellaceae, Rhizobiaceae and Bradyrhizobiaceae) and Burkholderiales (Alcaligenaceae, Burkholderiaceae and Oxalobacteraceae) and only few clones in cluster IV were related to Rhodospirillales (Rhodospirillaceae), and the NosZ-based denitrifiers composition from our studied soil was similar to that from other farmland soils (Ewall et al., 2005; Horn et al., 2006).

Our study clearly demonstrated the temporal shifts in community composition of the nirS-, nirK- and nosZ-harboring denitrifiers in soil after the addition of pyrene. Previous studies also showed that ammonium, fertilization, plant species, sampling time, water logging and temperature all temporarily altered the structure of nirK-harboring denitrifying community (Avrahami et al., 2002; Braker et al., 2010; Bremer et al., 2007; Wolsing and Priemé, 2004; Yoshida et al., 2009). The genetic shifts of the denitrifying community due to PAHs perturbation could be attributed to the inhibition of sensitive and the development of tolerant species (Leahy and Colwell, 1990; Ford, 1993; Whittaker, 1975). In our study, the development of tolerant species could be reflected by the higher proportion of Bradyrhizobiales, Rhodospirillales, Burkholderiales and Pseudomonadales in the EC50 treatment, and it has been reported that Affpia broomeae, Burkholderia sp. DB11, Achromobacter sp. NCW, Thalassospira xianhensis sp. nov. and Pseudomonas putida belonging to the above four groups were isolated from contaminated soils, wastewater, sludge and marine, and these species were able to degrade PAHs and other hydrocarbons (Bodour et al., 2003; Guo et al., 2008; Zhao et al., 2010; Balashova et al., 1999).

5. Conclusion

Our results clearly showed that pyrene reduced denitrification activity as well as the abundance, diversity and composition of the denitrifying community. The abundance of the denitrifying community harboring nirK, nirS or nosZ gene is more sensitive to pyrene than potential denitrification activity. Our study further demonstrated that the abundance of denitrifiers carrying out different processes were different in sensitivity to pyrene. Pyrene addition increased the proportions of four groups including Bradyrhizobiales, Rhodospirillales, Burkholderiales and Pseudomonadales, with each containing some species that can degrade PAHs.

Acknowledgements

This study was financially supported by the Chinese Academy of Sciences (KZCX1-YW-06-03) and the Ministry of Science and Technology, China (2007CB407301). The authors would like to thank Dr Paul Williams for proofreading the manuscript.

References

