Fate of tetracyclines in swine manure of three selected swine farms in China

Min Qiao1,*, Wangda Chen2, Jianqiang Su3, Bing Zhang1,4, Cai Zhang1,4

1. State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: minqiao@rcees.ac.cn
2. Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
3. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
4. College of Resources and Environment, Shandong Agricultural University, Taian 271018, China

Received 15 August 2011; revised 01 November 2011; accepted 09 November 2011

Abstract
Veterinary antibiotics can enter the environment due to the common practice of land application of manure from treated animals. The environmental fate of tetracyclines in swine manure after composting and field application remains largely unknown. This study analyzed the concentrations of tetracyclines in manure, manure-based compost and compost amended soil in selected swine farms from Beijing, Jiaxing and Putian, China to determine the dilution effects of antibiotics when released into the soil environment. The results demonstrate that residues of antibiotics were detected in all samples and chlortetracycline as well as its degradation products should be regarded critically concerning their potential ecotoxicity. Application of manure-based compost to soil could reduce the possible risk posed by antibiotic contamination, but the trigger value of 100 μg/kg was still exceeded in soil samples (776.1 μg/kg dw) from Putian City after application of compost. Field studies such as the present one can help to improve the routine administration of antibiotic-containing composted manure.

Key words: tetracyclines; swine manure; compost; soil; environmental fate
DOI: 10.1016/S1001-0742(11)60890-5

Introduction
Swine production is globally distributed and a majority of the production occurs in China. Nowadays, the swine production is becoming more specialized, concentrated and industrialized (Chen, 2009). Consequently, large amounts of swine manure are produced and the environmental concerns about manure disposal are increasing (Martinez et al., 2009). Traditionally, swine manure is directly applied to farmland in China. Since swine manure is nutrient-rich, it can greatly decrease commercial fertilizer costs if properly used. Application of raw manure to farmland can contribute ammonia, pathogens, and volatile organic compounds. Many studies have explored composting as an alternative to direct land application of livestock waste (Gil et al., 2008). It is a well-developed waste management practice whereby the organic components of raw manures are biologically decomposed and the pathogens are destroyed under controlled conditions (U.S. Composting Council, 2001). The composted manure is odorless, fine-textured and has low moisture content, volume and weight. It can be easily handled, stored or applied to land as a soil amendment.

On the other hand, antibiotics are widely used in swine feeds for growth promotion and disease treatment or prevention (Bao et al., 2009; Kemper, 2008). Many antibiotics are poorly absorbed in the animal tissues, and subsequently could be excreted in the form of their parent compounds or metabolites to manure (Thiele-Bruhn, 2003). After repeated manure application, antibiotics tend to persist and accumulate in soils. Residual antibiotics may exert a selective pressure on soil microorganisms and alter the composition of the soil microbial community, contributing to the spread of antibiotic-resistant bacteria or resistance genes (Boxall et al., 2003; Schmitt et al., 2006; Yang et al., 2009). Therefore, it is necessary and important to treat and dispose of animal manure before its land application to reduce the amount of veterinary antibiotics released into the environment and minimize the risk of the widespread development of resistant bacteria derived from residual antibiotics (Kumar et al., 2005). Composting has been proved to be a feasible and effective approach to promote removal of antibiotics in animal manure (Arikan et al., 2007; Dolliver et al., 2008; Ramaswamy et al., 2010). But currently, manure-based compost from swine farms has not been well characterized. Most of the studies were carried out at the laboratory scale and only focused on the removal of parent antibiotics (Li et al., 2010; Sharma et al., 2009).

Tetracyclines (TCs) are the most commonly used antimicrobials in swine production. Residues of the tetracycline class of antibiotics in swine manure have been

* Corresponding author. E-mail: minqiao@rcees.ac.cn
widely reported (Aust et al., 2008; Watanabe et al., 2010; Pan et al., 2011). However, few field studies on levels of veterinary antibiotics in soil after amending with manure compost have been published (Kwon, 2011). The objective of this study is to understand the occurrence and the fate of TCs and their degradation products in swine manure after composting and field application. The results could provide useful information for assessing the impacts or potential risks of antibiotics to ecosystems and for proper handling of antibiotic-containing manure.

1 Materials and methods

1.1 Sample collection

Three representative swine farms from Beijing, Jiaxing (Zhejiang Province) and Putian (Fujian Province) were selected as sampling sites and a total of 36 samples were collected in September 2010. These large-scale swine farms (producing 10,000 market hogs per year) have developed modern compost systems to produce organic fertilizer with swine manure and other sources of carbon. Agronomic plots were also established near the swine production units. Four replicates of raw manure and manure-based compost were taken from the manure or compost heaps stockpiled in each plant and random soil samples were collected from the plots upon which manure-based compost had been applied. All the samples were kept on dry ice before being transferred to the laboratory and stored at –80°C until analysis.

1.2 Sample pre-treatment

Extraction of TCs from the solid samples was based on the method developed by Karci and Balcioğlu (2009) with minor modification. Briefly, the samples were freeze-dried to complete dryness and sieved through a 60-mesh sieve before further handling. After transferring 3.0 g of soil/compost or 1.0 g of manure into a centrifuge tube, 20 mL McIlvaine-Na2EDTA extraction buffer was added into each tube and the centrifuge tubes were vortexed for 30 sec. The samples were sonicated in an ultrasonic bath (KQ-600DE, Kunsan, China) for 10 min and then centrifuged at 4000 r/min for 15 min. The supernatant was decanted into a new glass bottle and extraction was repeated twice. The extracts were combined and filtered through glass fiber filters. Then the samples were preconcentrated and cleaned-up by solid phase extraction (SPE) cartridges (Oasis HLB, 6 cc/500 mg). The HLB cartridges were preconditioned with 5 mL methylene chloride, 5 mL of methanol and 5 mL of McIlvaine-Na2EDTA buffer. After the extracts were loaded, the cartridges were rinsed with 6 mL of ultra pure water and then eluted with 5 mL of methanol. The eluates were concentrated to dryness under a gentle nitrogen flow and then dissolved in 0.5 mL of methanol. Before LC-MS-MS analysis the methanol extracts were diluted 1:1 (V/V) with MilliQ water. Recoveries were determined by spiking a mixture of standards into the three matrices (manure, compost and soil) at the concentrations of 400 μg/kg TCs, followed by the same extraction procedure described above. Samples were analysed in triplicate.

1.3 Sample analysis

A Waters ACQUITY UPLC™ system (USA) equipped with a Waters Micromass Quattro Premier XE (triple-quadrupole) detector was used to separate and quantify antibiotic samples as described by Jia et al. (2009). Five target TCs, including tetracycline (TC, 95%), oxytetracycline (OTC, 95%), chlortetracycline (CTC, 80%), doxycycline (DXC, 98%), and methacycline (MTC), and ten degradation products, including 4-epitetracycline (ETC), anhydrotetracycline (ATC), 4-epianhydrotetracycline (EATC, 97%), 4-epoxytetracycline (EOTC, 97%), α-apo-oxytetracycline (α-apo-OTC), β-apo-oxytetracycline (β-apo-OTC), isochlortetracycline (ICTC, 97%), 4-epi-chlortetracycline (EICTC, 97%), anhydrochlortetracycline (ACTC), and 4-epi-anhydrochlortetracycline (EACTC) were analyzed (Wu et al., 2010). The five TCs were obtained from Sigma-Aldrich (USA), and the ten degradation products were purchased from Acros Organics (Geel, Belgium). The instrument detection limits ranged from 0.03 to 0.10 μg/L. Average recoveries of TCs ranged from (32±11)% to (87±6)% for all the samples. Satisfactory recoveries were observed for the parent compounds such as OTC, CTC and TC, but recoveries of degradation products were relatively low. The recoveries were usually in the same range as for other published methods (Hamscher et al., 2002; Martínez-Carballo et al., 2007; Tylová et al., 2010). The antibiotic concentrations were not corrected for recoveries.

1.4 Characterization of manure, compost and soil samples

Samples were characterized using different parameters to obtain a comprehensive data set for the samples. The pH and electrical conductivity (EC) were determined from a sample:water (1:5, W/V) suspension using a pH meter (FE20, Mettler Toledo, Swiss) and EC meter (SenION156, HACH, USA). The organic matter and total-P were analyzed according to the standard methods (Bao, 2000). Total-N and total-C were determined using an elemental analyzer (Vario EL III, Elementar, Germany). The physicochemical properties of the swine manure, manure-based compost and compost-amended soil are summarized in Table 1.

2 Results and discussion

2.1 Occurrence of tetracyclines in manure

The tetracycline class of antibiotics was commonly detected in the swine manure samples analyzed (Table 2), indicating that these compounds had been fed to the animals. However, the concentration of antibiotics varied greatly for manure in different regions. The highest total concentration of TCs was up to 15264.0 μg/kg dw for manure sampled from Putian and the lowest concentration was only 117.1 μg/kg dw for manure sampled from
Beijing. Antibiotic residues in manure samples from Jiaxing were detected at the concentration of 4956.9 μg/kg dw. These data can indirectly reflect the regulated use of veterinary antibiotics in Beijing.

Among the different TCs, the OTC concentration contributes more than half of the total concentration for samples from Beijing (74.9±23.1 μg/kg dw) and Jiaxing (2544.2±518.2 μg/kg dw) swine farms, while CTC had the highest percentage for manure samples from Putian (8991.8±6592.2 μg/kg dw). Karci and Balcioglu (2009) detected an OTC concentration of about 500 μg/kg in fresh poultry manure. Even higher concentrations of OTC (70436 μg/kg) were also reported in the faces of calves (De Liguoro et al., 2003). Hamscher et al. (2002) reported that liquid manure contained 100 μg/kg CTC, which was comparable to the samples from Jiaxing. Tylova et al. (2010) detected CTC in liquid hog manure at a concentration of 5880 μg/kg. In China, the detection frequency of OTC or CTC was generally high. The detected OTC and CTC concentrations have been reported in the range of 0.15–59.06 μg/kg and 0.16–21.06 μg/kg, respectively, in pig dung samples from eight provinces of China (Zhao et al., 2010). The average OTC concentration of 2.69 μg/kg was similar to the determined value in Jiaxing and the average CTC concentration of 1.15 μg/kg was higher than those in Beijing and Jiaxing, but much lower than that in Putian (Zhao et al., 2010). Furthermore, TC was detected in the selected three swine farms with a similar concentration trend as for CTC, that is, Putian (121.0 μg/kg dw) > Jiaxing (121.5 μg/kg dw) > Beijing (2.2 μg/kg dw). TC detected in pig manure samples in Austria was in the range of 0.36–23 μg/kg and was much higher than this study (Martinez-Carballo et al., 2007). The main degradation products of TCs detected in swine manure were their epimers ETC, ECTC and EOTC, which is in agreement with the reported literature that TCs can be excreted in the form of their 4-epimers (Brambilla et al., 2007). Especially for ETC, the concentration was nearly as much as that of TC. Dehydrated products and 4-epianhydrotetracyclines of TC and CTC tended to be lower than their parent TCs. DXC is also one of the most commonly used antibiotics in food-producing animals and it was found in relatively higher concentration in swine manure of this study. The average DXC concentrations were 1350.7 and 1222.7 μg/kg for manure sampled from Jiaxing and Putian, respectively, which were higher than the geometric mean concentration (790 μg/kg) reported by Zhao et al. (2010). In addition, α-apo-OTC, β-apo-OTC and MTC were also discovered in Jiaxing and Putian manure samples.

Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>BJM</th>
<th>JXM</th>
<th>PTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>2.2 (0.5)</td>
<td>121.5 (48.9)</td>
<td>1210.0 (910.6)</td>
</tr>
<tr>
<td>ETC</td>
<td>2.4 (0.4)</td>
<td>128.4 (61.7)</td>
<td>1261.3 (928.3)</td>
</tr>
<tr>
<td>ATC</td>
<td>ND</td>
<td>5.0 (2.4)</td>
<td>69.6 (50.9)</td>
</tr>
<tr>
<td>EATC</td>
<td>ND</td>
<td>7.2 (2.3)</td>
<td>37.6 (31.3)</td>
</tr>
<tr>
<td>OTC</td>
<td>7.4 (2.1)</td>
<td>2544.2 (518.2)</td>
<td>39.2 (33)</td>
</tr>
<tr>
<td>EOTC</td>
<td>6.4 (1.6)</td>
<td>410.1 (301.8)</td>
<td>2.5 (2.9)</td>
</tr>
<tr>
<td>α-apo-OTC</td>
<td>ND</td>
<td>67.4 (33.9)</td>
<td>126.8 (204.3)</td>
</tr>
<tr>
<td>β-apo-OTC</td>
<td>ND</td>
<td>6.5 (3.8)</td>
<td>6.4 (10.4)</td>
</tr>
<tr>
<td>CTC</td>
<td>7.9 (1.6)</td>
<td>67.4 (11.8)</td>
<td>8991.8 (6592.2)</td>
</tr>
<tr>
<td>ICTC</td>
<td>2.3 (0.3)</td>
<td>6.2 (1.3)</td>
<td>1830.2 (1281.0)</td>
</tr>
<tr>
<td>ECTC</td>
<td>15.9 (3.3)</td>
<td>230.4 (36.7)</td>
<td>386.9 (670.1)</td>
</tr>
<tr>
<td>ACTC</td>
<td>ND</td>
<td>ND</td>
<td>4.6 (3.3)</td>
</tr>
<tr>
<td>EACTC</td>
<td>ND</td>
<td>ND</td>
<td>3.3 (1.3)</td>
</tr>
<tr>
<td>MTC</td>
<td>ND</td>
<td>12.0 (5.9)</td>
<td>71.1 (114.2)</td>
</tr>
<tr>
<td>DXC</td>
<td>5.1 (0.5)</td>
<td>1350.7 (247.4)</td>
<td>1222.7 (1324.8)</td>
</tr>
<tr>
<td>TCs</td>
<td>117.1 (28.4)</td>
<td>4956.9 (1042.1)</td>
<td>15264.0 (7427.0)</td>
</tr>
</tbody>
</table>

* The values represent the means ± standard.

TC: tetracycline; ETC: 4-epitetracycline; ATC: anhydrotetracycline; EATC: 4-epianhydrotetracycline; OTC: oxytetracycline; EOTC: 4-epoxytetracycline; α-apo-OTC: α-apo-oxotetracycline; β-apo-OTC: β-apo-oxotetracycline; CTC: chlortetracycline; ICTC: isochlortetracycline; ECTC: 4-epi-chlortetracycline; ACTC: anhydrochlortetracycline; EACTC: 4-epi-anhydrochlortetracyline; MTC: methacycline; DXC: doxycycline; ND: not detected.

2.2 Occurrence of tetracyclines in manure-based compost

Many studies have demonstrated that the concentrations of antibiotics excreted with feces and urine can be significantly decreased during composting (Arikan et al., 2007; Dolliver et al., 2008). In this study, the concentrations of TCs in manure-based compost also declined greatly compared to those in swine manure and individual compounds showed similar concentration trends (Table 3). The average final concentrations for Jiaxing and Putian compost samples were 451.9 and 850.8 μg/kg dw, respectively. However, the decrease was relatively low for the Beijing compost sample with a final concentration of 88.3 μg/kg. Although the detailed composting techniques were not available, it could be inferred that further removal was very difficult when the initial concentration was low. At present, there is no regulated guideline to limit the concentrations of TCs in composts in China. Kwon et al. (2011) used the guideline concentration that appeared in the ‘Official Standard of Feeds’ under the ‘Control of Livestock and Fish Feed Act’ in Korea (800 μg/kg for TCs) as a control point to monitor the residues of the target veterinary antibiotics in manure-based compost. According to this guideline concentration, the compost sample from Putian exceeded the value.

TC, OTC, CTC and the associate epimers ETC, EOTC and ECTC were the main detected compounds after...
Andreu et al. (2009) detected TCs at the concentration of μg/kg in soils fertilized with sewage sludge. The detected maximum concentration of 776.1 μg/kg TCs in soils fertilized with manure compost of this study was higher than the above reported data but much lower than the maximum OTC concentration of 7280 μg/kg detected in winter soil from organic vegetable bases, Tianjin, China (Hu et al., 2010).

The soil trigger value of antibiotics for proceeding to environmental toxicity evaluation was increased from 10 to 100 μg/kg by the Veterinary International Committee on Harmonization (VICH, 2000). Although the total concentrations of TCs decreased sharply after composting, the new trigger value is still exceeded in soil samples from Putian (776.1 μg/kg dw) after application of the manure-based compost. The accumulation may result from the relatively high antibiotics concentration in the applied compost as well as a rate of application to soils exceeding the degradation rate of tetracyclines. Soil bacteria exposed to these concentrations may experience acute toxic effects and this could affect the composition and function of soil microbial flora. Soils from Jiaxing (81.0 μg/kg dw) had a concentration of the tetracycline class of antibiotics between 10 and 100 μg/kg, and the total concentration in soils from Beijing (4.7 μg/kg dw) falls below the old trigger value of 10 μg/kg. It has been reported that even very low quantities of antibiotics encouraged the emergence of antibiotic resistant bacteria, not to mention pathogenic bacteria which may also develop resistance to these substances. Therefore, further study is needed to understand the environmental fate of these antibiotics, as well as to evaluate the potential impact of these antibiotics on the soil ecosystem, especially on soil microorganisms.

3 Conclusions

The results showed that the studied manure, compost and soil samples were contaminated by TCs and the highest concentration of total TCs was detected in manure samples from Putian. CTC and its degradation products should be regarded critically concerning their potential ecotoxicity. This study revealed significant dilution effects...
of antibiotics after manure composting then application in soil, and indicated that use of manure-based compost could decrease the possible risk posed by antibiotic contamination. However, repeated fertilization of soils with manure-based compost may also contribute to the development of antibiotic resistant microbial populations; therefore it is important to monitor the environmental fate of TCs in soil and guidelines should be strictly established and followed for manure-based compost production.

Acknowledgments

This work was supported by the Major Projects of Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-Q02-05) and the Beijing Science and Technology Program (No. D101105046410004). We thank Prof. Yuansong Wei, Dr. Jiaxi Zheng and Mrs. Hongmei Zhang for the assistance in sampling, and Prof. Jianying Hu and Dr. Ai Jia for the assistance in sample analysis.

References

