中国科学院生态环境研究中心机构知识库
Advanced  
RCEES OpenIR  > 环境水质学国家重点实验室  > 期刊论文
题名: 基于机器视觉的鱼类模式生物在线监测技术方法研究
作者: 周振宇; 邵振洲; 施智平; 渠瀛; 张融; 饶凯锋; 关永
刊名: 生态毒理学报
出版日期: 2016
卷号: 11, 期号:1, 页码:217-224
关键词: 生物式水质监测 ; 实时性 ; 观测指标
其他题名: Study on the Method of Fish Model Organism On-line Monitoring Technology Based on Machine Vision
中文摘要: 水污染的防治问题是我国关注的重中之重,现有理化监测方法的实时性和综合性较差,特别是对于一些极端可变化的环境,更需要新的方法以辅助和解决。生物式水质监测方法被提出,通过利用生物对环境污染或变化所产生的反应来直接或间接体现水质的污染情况。然而,观测指标与量化标准是面临的一大难题。文章利用机器视觉的方法,以青鳉鱼为模式生物,并以青鳉鱼的生理特征以及运动特征(呼吸频率、胸鳍摆动频率、摆尾频率)为观测指标,两方面综合评定青鳉鱼应激状态,实时监测与分析。实验结果表明该方法能为生物式水质监测和预警的发展提供一定支持与参考。测得青鳉鱼呼吸频率为3.06 Hz,胸鳍摆动频率为4.83 Hz,尾鳍摆动频率为5.08 Hz,结果与实际指标一致。
部门归属: 环境水质学国家重点实验室
英文摘要: The prevention and control of water pollution is a top - priority issue in China. The real - time and comprehensive performance of existing physical and chemical monitoring methods are insufficient. Some new approaches are required for assistance in the extremely variable environment,especially. A biological method of water quality monitoring provides a novel solution in this field. The water quality is detected by the biological response to reflect the direct or indirect pollution. However,the observation indexes and quantitative criteria are major problems to estimate in the complex water environment. In this paper,the medaka fish is chosen as the model organism,and the corresponding physiological characteristics and movement characteristics are observation indexes,such as breathing frequency,pectoral oscillation frequency,tail beat frequency,etc. By adopting machine vision based method,the real - time monitoring and analysis are achieved. Experimental results show that the proposed method can provide the support and reference for the development of biological water quality monitoring and early warning. The measured breathing frequency of medaka fish was 3.06 Hz,the pectoral oscillation frequency was 4.83 Hz and the tail beat frequency was 5.08 Hz. The results are consistent with the actual indexes.
收录类别: CSCD
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.rcees.ac.cn/handle/311016/36650
Appears in Collections:环境水质学国家重点实验室_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
基于机器视觉的鱼类模式生物在线监测技术方法研究_周振宇.pdf(791KB)期刊论文作者接受稿开放获取View 联系获取全文
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[周振宇]'s Articles
[邵振洲]'s Articles
[施智平]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[周振宇]‘s Articles
[邵振洲]‘s Articles
[施智平]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于机器视觉的鱼类模式生物在线监测技术方法研究_周振宇.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院生态环境研究中心 - Feedback
Powered by CSpace