RCEES OpenIR  > 大气污染控制中心
Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times
Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun
2017-04-01
Source PublicationENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume24Issue:10Pages:9026-9035
AbstractMembrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans- membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m(-2) h(-1) bar(-1), and 4.5x 1012 m(-1) when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L-1) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L-1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics, operational conditions, and feed characteristics.
Department大气污染控制中心
KeywordFouling Foulant Hrt Effluent Organic Matter Extracellular Polymeric Substances Soluble Microbial Product Correlation Analysis Principal Component Analysis
Document Type期刊论文
Identifierhttp://ir.rcees.ac.cn/handle/311016/39196
Collection大气污染控制中心
Recommended Citation
GB/T 7714
Yu, Dawei,Chen, Yutao,Wei, Yuansong,et al. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times[J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH,2017,24(10):9026-9035.
APA Yu, Dawei,Chen, Yutao,Wei, Yuansong,Wang, Jianxing,Wang, Yawei,&Li, Kun.(2017).Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH,24(10),9026-9035.
MLA Yu, Dawei,et al."Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times".ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH 24.10(2017):9026-9035.
Files in This Item: Download All
File Name/Size DocType Version Access License
Fouling analysis of (993KB)期刊论文作者接受稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Yu, Dawei]'s Articles
[Chen, Yutao]'s Articles
[Wei, Yuansong]'s Articles
Baidu academic
Similar articles in Baidu academic
[Yu, Dawei]'s Articles
[Chen, Yutao]'s Articles
[Wei, Yuansong]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Yu, Dawei]'s Articles
[Chen, Yutao]'s Articles
[Wei, Yuansong]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.pdf
Format: Adobe PDF
This file does not support browsing at this time
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.