RCEES OpenIR  > 中国科学院饮用水科学与技术重点实验室
Tuning the N-bonded cerium(iii) fraction/g-C3N4 interface in hollow structures using an in situ reduction treatment for superior photochemical hydrogen evolution Electronic supplementary information (ESI) available. See DOI: 10.1039/c9cy01305a
Waqas, Muhammad; Yang, Bo; Cao, Lujie; Zhao, Xu; Iqbal, Waheed; Xiao, Ke; Zhu, Caizhen; Zhang, Junmin
2019-10-07
Source PublicationCATALYSIS SCIENCE & TECHNOLOGY
ISSN2044-4753
Volume9Issue:19Pages:5322-5332
AbstractThe synthesis of inorganic/organic interfaces in spherical hollow structures (HS) is a promising but challenging task. Herein, we innovatively utilized porous CeO2-HS as a scaffold to incorporate cyanamide molecules, which upon one-step in situ reducing treatment, yielded nitrogen-bonded CeO2-x/g-C3N4-HS. The electron microscope and spectroscopic analysis validated two functions of cyanamide: i) it generates an in situ reducing atmosphere (CO, N-2, NOx) to tune the cerium oxide vacancy population, and ii) it acts as a N and g-C3N4 precursor. Meanwhile, the unique HS geometry promotes cerium oxide reduction at low temperature due to the following: i) the high surface area of CeO2-HS provides a larger area for CeO2/CO interaction; ii) adequate pore volume enhances the cerium oxide reduction kinetics; and, iii) the CeO2 nanoparticles increase the ceria surface defect population by obeying the ceria oxygen vacancy transport model. Remarkably, the N-CeO2-x/g-C3N4-HS photocatalyst hydrogen evolution rate is 43.32 mu mol g(-1) h(-1) under visible light (lambda >= 420 nm), which is 3.8 times higher than pristine g-C3N4 (11.4 mu mol g(-1) h(-1)) due to: a) enhancement of the material's light-harvesting ability by HS, b) formation of controlled optically active Ce3+ sites, and c) intimate inorganic/organic interfaces, which boosted the minority carriers' separation efficiency.
Department中国科学院饮用水科学与技术重点实验室
Document Type期刊论文
Identifierhttp://ir.rcees.ac.cn/handle/311016/43545
Collection中国科学院饮用水科学与技术重点实验室
Affiliation1.Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
2.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Key Lab Drinking Water Sci & Technol, Beijing 100085, Peoples R China
3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
Recommended Citation
GB/T 7714
Waqas, Muhammad,Yang, Bo,Cao, Lujie,et al. Tuning the N-bonded cerium(iii) fraction/g-C3N4 interface in hollow structures using an in situ reduction treatment for superior photochemical hydrogen evolution Electronic supplementary information (ESI) available. See DOI: 10.1039/c9cy01305a[J]. CATALYSIS SCIENCE & TECHNOLOGY,2019,9(19):5322-5332.
APA Waqas, Muhammad.,Yang, Bo.,Cao, Lujie.,Zhao, Xu.,Iqbal, Waheed.,...&Zhang, Junmin.(2019).Tuning the N-bonded cerium(iii) fraction/g-C3N4 interface in hollow structures using an in situ reduction treatment for superior photochemical hydrogen evolution Electronic supplementary information (ESI) available. See DOI: 10.1039/c9cy01305a.CATALYSIS SCIENCE & TECHNOLOGY,9(19),5322-5332.
MLA Waqas, Muhammad,et al."Tuning the N-bonded cerium(iii) fraction/g-C3N4 interface in hollow structures using an in situ reduction treatment for superior photochemical hydrogen evolution Electronic supplementary information (ESI) available. See DOI: 10.1039/c9cy01305a".CATALYSIS SCIENCE & TECHNOLOGY 9.19(2019):5322-5332.
Files in This Item: Download All
File Name/Size DocType Version Access License
Tuning the N-bonded (6128KB)期刊论文出版稿开放获取CC BY-NC-SAView Download
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Waqas, Muhammad]'s Articles
[Yang, Bo]'s Articles
[Cao, Lujie]'s Articles
Baidu academic
Similar articles in Baidu academic
[Waqas, Muhammad]'s Articles
[Yang, Bo]'s Articles
[Cao, Lujie]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Waqas, Muhammad]'s Articles
[Yang, Bo]'s Articles
[Cao, Lujie]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Tuning the N-bonded cerium(iii) fractiong-C3N4 interface in hollow structures using an in situ reduction treatment for superior photochemical hydrogen evolution.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.