Plants and related carbon cycling under elevated ground-level ozone: A mini review; Plants and related carbon cycling under elevated ground-level ozone_ A mini review.pdf | |
Zhang, Yanli; Han, Zhiyu; Li, Xinyi; Zhang, Hongliang; Yuan, Xiangyang![]() | |
2022-09-01 | |
Source Publication | APPLIED GEOCHEMISTRY
![]() |
ISSN | 0883-2927 |
Volume | 144Issue:0Pages:105400 |
Abstract | Plants play a crucial role in global carbon biogeochemical cycling and natural terrestrial carbon sinks. Dynamic changes in plant-related carbon cycling processes under changing climate and atmospheric compositions are hot scientific issues concerning carbon neutrality. Ozone, as a damaging oxidant, shows a rising trend near the ground where plants grow, directly and indirectly impacting forests and other types of vegetation. This review focuses on the effects of elevated atmospheric ozone levels on plant-related carbon cycling processes, including carbon dioxide (CO2) assimilation, carbon allocation to roots, volatile emissions, soil carbon sequestration and litter decomposition. Based on previous studies, we propose that field observations, especially in situ long-term observations under natural growing conditions in well-designed networks with a better representation, are needed to deeply understand the effects of elevated ozone on plants. Apart from an overwhelming concern about the influence of ozone on crop yields, studies on the effects of elevated ozone on forests, especially tropical and subtropical forests, should be strengthened in the future. Meanwhile, the interactions between ozone and plants should be considered in understanding plants' feedback to oxidants through emissions of volatiles and other trace gases. Moreover, geochemical techniques such as carbon isotopes and molecular markers, along with big data and artificial intelligence approaches, can be extensively used to decode and constrain the ozone-plant re-lationships, such as those between net primary productivity and ozone. |
Department | 城市与区域生态国家重点实验室 ; 城市与区域生态国家重点实验室 |
Keyword | VOLATILE ORGANIC-COMPOUNDS NET PRIMARY PRODUCTIVITY BEECH FAGUS-SYLVATICA BOREAL PEATLAND MICROCOSMS LEAF-LITTER DECOMPOSITION TROPOSPHERIC OZONE ISOPRENE EMISSION CLIMATE-CHANGE TREMBLING ASPEN ROOT BIOMASS |
Document Type | 期刊论文 |
Identifier | https://ir.rcees.ac.cn/handle/311016/47316 |
Collection | 城市与区域生态国家重点实验室 |
Affiliation | 1.Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Peoples R China 2.Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Key Lab Environm Protect & Resources Uti, Guangzhou 510640, Peoples R China 3.Chinese Acad Sci, Inst Urban Environm, CAS Ctr Excellence Reg Atmospher Environm, Xiamen 361021, Peoples R China 4.Fudan Univ, Dept Environm Sci & Engn, Shanghai 200438, Peoples R China 5.Chinese Acad Sci, Res Ctr Ecoenvironm Sci, State Key Lab Urban & Reg Ecol, Beijing 100085, Peop |
Recommended Citation GB/T 7714 | Zhang, Yanli,Han, Zhiyu,Li, Xinyi,et al. Plants and related carbon cycling under elevated ground-level ozone: A mini review, Plants and related carbon cycling under elevated ground-level ozone_ A mini review.pdf[J]. APPLIED GEOCHEMISTRY,2022,144(0):105400. |
APA | Zhang, Yanli.,Han, Zhiyu.,Li, Xinyi.,Zhang, Hongliang.,Yuan, Xiangyang.,...&Wang, Xinming.(2022).Plants and related carbon cycling under elevated ground-level ozone: A mini review.APPLIED GEOCHEMISTRY,144(0),105400. |
MLA | Zhang, Yanli,et al."Plants and related carbon cycling under elevated ground-level ozone: A mini review".APPLIED GEOCHEMISTRY 144.0(2022):105400. |
Files in This Item: | There are no files associated with this item. |
Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.
Edit Comment